Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sensors (Basel) ; 24(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38610408

ABSTRACT

Data from the Internet of Things (IoT) enables the design of new business models and services that improve user experience and satisfaction. These data serve as important information sources for many domains, including disaster management, biosurveillance, smart cities, and smart health, among others. However, this scenario involves the collection of personal data, raising new challenges related to data privacy protection. Therefore, we aim to provide state-of-the-art information regarding privacy issues in the context of IoT, with a particular focus on findings that utilize the Personal Data Store (PDS) as a viable solution for these concerns. To achieve this, we conduct a systematic mapping review to identify, evaluate, and interpret the relevant literature on privacy issues and PDS-based solutions in the IoT context. Our analysis is guided by three well-defined research questions, and we systematically selected 49 studies published until 2023 from an initial pool of 176 papers. We analyze and discuss the most common privacy issues highlighted by the authors and position the role of PDS technologies as a solution to privacy issues in the IoT context. As a result, our findings reveal that only a small number of works (approximately 20%) were dedicated to presenting solutions for privacy issues. Most works (almost 82%) were published between 2018 and 2023, demonstrating an increased interest in the theme in recent years. Additionally, only two works used PDS-based solutions to deal with privacy issues in the IoT context.

2.
ISA Trans ; 143: 536-547, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37770368

ABSTRACT

The vibration signals of rolling bearings are complex and changeable, and extracting meaningful features is difficult. Currently, the commonly used empirical mode decomposition (EMD) algorithms have the problem of mode aliasing. In this paper, a new feature extraction method based on the improved complete ensemble empirical mode decomposition with adapted noise (ICEEMDAN) and permutation entropy is proposed. In this method, the ICEEMDAN algorithm is first improved and optimized to enable a self-selection function The vibration signal is then decomposed into several intrinsic modal functions using this algorithm, and the permutation entropy is extracted as the fault feature of rolling bearings, which improves the accuracy of fault classification and realizes the intelligent feature extraction of different fault states. Then, the Case Western Reserve University dataset is used for verification, and the results show that this scheme can effectively separate the vibration signal characteristics of bearings in different states, and can be used to characterize the characteristics of different bearing signals. Finally, based on the mechanical transmission system bearing experimental platform independently developed by our school, the experimental results show that compared with the unimproved ICEEMDAN algorithm, the diagnostic accuracy rate of the proposed method is 99.5%, which is increased by 6.4%, and it can be effectively used for feature extraction of rolling bearings.

4.
Diagnostics (Basel) ; 13(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37189507

ABSTRACT

Early detection and analysis of lung cancer involve a precise and efficient lung nodule segmentation in computed tomography (CT) images. However, the anonymous shapes, visual features, and surroundings of the nodules as observed in the CT images pose a challenging and critical problem to the robust segmentation of lung nodules. This article proposes a resource-efficient model architecture: an end-to-end deep learning approach for lung nodule segmentation. It incorporates a Bi-FPN (bidirectional feature network) between an encoder and a decoder architecture. Furthermore, it uses the Mish activation function and class weights of masks with the aim of enhancing the efficiency of the segmentation. The proposed model was extensively trained and evaluated on the publicly available LUNA-16 dataset consisting of 1186 lung nodules. To increase the probability of the suitable class of each voxel in the mask, a weighted binary cross-entropy loss of each sample of training was utilized as network training parameter. Moreover, on the account of further evaluation of robustness, the proposed model was evaluated on the QIN Lung CT dataset. The results of the evaluation show that the proposed architecture outperforms existing deep learning models such as U-Net with a Dice Similarity Coefficient of 82.82% and 81.66% on both datasets.

5.
Sensors (Basel) ; 23(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37112242

ABSTRACT

The advent of simultaneous wireless information and power (SWIPT) has been regarded as a promising technique to provide power supplies for an energy sustainable Internet of Things (IoT), which is of paramount importance due to the proliferation of high data communication demands of low-power network devices. In such networks, a multi-antenna base station (BS) in each cell can be utilized to concurrently transmit messages and energies to its intended IoT user equipment (IoT-UE) with a single antenna under a common broadcast frequency band, resulting in a multi-cell multi-input single-output (MISO) interference channel (IC). In this work, we aim to find the trade-off between the spectrum efficiency (SE) and energy harvesting (EH) in SWIPT-enabled networks with MISO ICs. For this, we derive a multi-objective optimization (MOO) formulation to obtain the optimal beamforming pattern (BP) and power splitting ratio (PR), and we propose a fractional programming (FP) model to find the solution. To tackle the nonconvexity of FP, an evolutionary algorithm (EA)-aided quadratic transform technique is proposed, which recasts the nonconvex problem as a sequence of convex problems to be solved iteratively. To further reduce the communication overhead and computational complexity, a distributed multi-agent learning-based approach is proposed that requires only partial observations of the channel state information (CSI). In this approach, each BS is equipped with a double deep Q network (DDQN) to determine the BP and PR for its UE with lower computational complexity based on the observations through a limited information exchange process. Finally, with the simulation experiments, we verify the trade-off between SE and EH, and we demonstrate that, apart from the FP algorithm introduced to provide superior solutions, the proposed DDQN algorithm also shows its performance gain in terms of utility to be up to 1.23-, 1.87-, and 3.45-times larger than the Advantage Actor Critic (A2C), greedy, and random algorithms, respectively, in comparison in the simulated environment.

6.
Sensors (Basel) ; 22(6)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35336499

ABSTRACT

Future wireless networks promise immense increases on data rate and energy efficiency while overcoming the difficulties of charging the wireless stations or devices in the Internet of Things (IoT) with the capability of simultaneous wireless information and power transfer (SWIPT). For such networks, jointly optimizing beamforming, power control, and energy harvesting to enhance the communication performance from the base stations (BSs) (or access points (APs)) to the mobile nodes (MNs) served would be a real challenge. In this work, we formulate the joint optimization as a mixed integer nonlinear programming (MINLP) problem, which can be also realized as a complex multiple resource allocation (MRA) optimization problem subject to different allocation constraints. By means of deep reinforcement learning to estimate future rewards of actions based on the reported information from the users served by the networks, we introduce single-layer MRA algorithms based on deep Q-learning (DQN) and deep deterministic policy gradient (DDPG), respectively, as the basis for the downlink wireless transmissions. Moreover, by incorporating the capability of data-driven DQN technique and the strength of noncooperative game theory model, we propose a two-layer iterative approach to resolve the NP-hard MRA problem, which can further improve the communication performance in terms of data rate, energy harvesting, and power consumption. For the two-layer approach, we also introduce a pricing strategy for BSs or APs to determine their power costs on the basis of social utility maximization to control the transmit power. Finally, with the simulated environment based on realistic wireless networks, our numerical results show that the two-layer MRA algorithm proposed can achieve up to 2.3 times higher value than the single-layer counterparts which represent the data-driven deep reinforcement learning-based algorithms extended to resolve the problem, in terms of the utilities designed to reflect the trade-off among the performance metrics considered.

SELECTION OF CITATIONS
SEARCH DETAIL
...