Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 142(24): 10612-10616, 2020 06 17.
Article in English | MEDLINE | ID: mdl-32469525

ABSTRACT

Lysophosphatidic acid (LPA) is a phospholipid that acts as an extracellular signaling molecule and activates the family of lysophosphatidic acid receptors (LPA1-6). These G protein-coupled receptors (GPCRs) are broadly expressed and are particularly important in development as well as in the nervous, cardiovascular, reproductive, gastrointestinal, and pulmonary systems. Here, we report on a photoswitchable analogue of LPA, termed AzoLPA, which contains an azobenzene photoswitch embedded in the acyl chain. AzoLPA enables optical control of LPA receptor activation, shown through its ability to rapidly control LPA-evoked increases in intracellular Ca2+ levels. AzoLPA shows greater activation of LPA receptors in its light-induced cis-form than its dark-adapted (or 460 nm light-induced) trans-form. AzoLPA enabled the optical control of neurite retraction through its activation of the LPA2 receptor.


Subject(s)
Lysophospholipids/metabolism , Humans , Lysophospholipids/chemistry , Photochemical Processes , Receptors, Lysophosphatidic Acid/chemistry , Receptors, Lysophosphatidic Acid/metabolism , Signal Transduction
2.
J Am Chem Soc ; 141(29): 11522-11530, 2019 07 24.
Article in English | MEDLINE | ID: mdl-31291105

ABSTRACT

G protein-coupled receptors (GPCRs) are membrane proteins that play important roles in biology. However, our understanding of their function in complex living systems is limited because we lack tools that can target individual receptors with sufficient precision. State-of-the-art approaches, including DREADDs, optoXRs, and PORTL gated-receptors, control GPCR signaling with molecular, cell type, and temporal specificity. Nonetheless, these tools are based on engineered non-native proteins that may (i) express at nonphysiological levels, (ii) localize and turnover incorrectly, and/or (iii) fail to interact with endogenous partners. Alternatively, membrane-anchored ligands (t-toxins, DARTs) target endogenous receptors with molecular and cell type specificity but cannot be turned on and off. In this study, we used a combination of chemistry, biology, and light to control endogenous metabotropic glutamate receptor 2 (mGluR2), a Family C GPCR, in primary cortical neurons. mGluR2 was rapidly, reversibly, and selectively activated with photoswitchable glutamate tethered to a genetically targeted-plasma membrane anchor (membrane anchored Photoswitchable Orthogonal Remotely Tethered Ligand; maPORTL). Photoactivation was tuned by adjusting the length of the PORTL as well as the expression level and geometry of the membrane anchor. Our findings provide a template for controlling endogenous GPCRs with cell type specificity and high spatiotemporal precision.


Subject(s)
Molecular Biology/methods , Receptors, Metabotropic Glutamate/genetics , Amino Acids/pharmacology , Animals , Azo Compounds/chemistry , Cell Membrane/metabolism , Glutamic Acid/chemistry , HEK293 Cells , Humans , Ligands , Light , Neurons/metabolism , Photochemical Processes , Protein Engineering/methods , Rats , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Receptors, Metabotropic Glutamate/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Xanthenes/pharmacology
3.
Nat Chem Biol ; 15(6): 623-631, 2019 06.
Article in English | MEDLINE | ID: mdl-31036923

ABSTRACT

Sphingosine-1-phosphate (S1P) plays important roles as a signaling lipid in a variety of physiological and pathophysiological processes. S1P signals via a family of G-protein-coupled receptors (GPCRs) (S1P1-5) and intracellular targets. Here, we report on photoswitchable analogs of S1P and its precursor sphingosine, respectively termed PhotoS1P and PhotoSph. PhotoS1P enables optical control of S1P1-3, shown through electrophysiology and Ca2+ mobilization assays. We evaluated PhotoS1P in vivo, where it reversibly controlled S1P3-dependent pain hypersensitivity in mice. The hypersensitivity induced by PhotoS1P is comparable to that induced by S1P. PhotoS1P is uniquely suited for the study of S1P biology in cultured cells and in vivo because it exhibits prolonged metabolic stability compared to the rapidly metabolized S1P. Using lipid mass spectrometry analysis, we constructed a metabolic map of PhotoS1P and PhotoSph. The formation of these photoswitchable lipids was found to be light dependent, providing a novel approach to optically probe sphingolipid biology.


Subject(s)
Lysophospholipids/metabolism , Sphingosine/analogs & derivatives , Animals , Lysophospholipids/chemistry , Mice , Models, Molecular , Molecular Structure , Optical Imaging , Photochemical Processes , Sphingosine/chemistry , Sphingosine/metabolism
4.
J Am Chem Soc ; 139(51): 18522-18535, 2017 12 27.
Article in English | MEDLINE | ID: mdl-29166564

ABSTRACT

Family A G protein-coupled receptors (GPCRs) control diverse biological processes and are of great clinical relevance. Their archetype rhodopsin becomes naturally light sensitive by binding covalently to the photoswitchable tethered ligand (PTL) retinal. Other GPCRs, however, neither bind covalently to ligands nor are light sensitive. We sought to impart the logic of rhodopsin to light-insensitive Family A GPCRs in order to enable their remote control in a receptor-specific, cell-type-specific, and spatiotemporally precise manner. Dopamine receptors (DARs) are of particular interest for their roles in motor coordination, appetitive, and aversive behavior, as well as neuropsychiatric disorders such as Parkinson's disease, schizophrenia, mood disorders, and addiction. Using an azobenzene derivative of the well-known DAR ligand 2-(N-phenethyl-N-propyl)amino-5-hydroxytetralin (PPHT), we were able to rapidly, reversibly, and selectively block dopamine D1 and D2 receptors (D1R and D2R) when the PTL was conjugated to an engineered cysteine near the dopamine binding site. Depending on the site of tethering, the ligand behaved as either a photoswitchable tethered neutral antagonist or inverse agonist. Our results indicate that DARs can be chemically engineered for selective remote control by light and provide a template for precision control of Family A GPCRs.


Subject(s)
Dopamine D2 Receptor Antagonists/pharmacology , Dopamine D2 Receptor Antagonists/radiation effects , Drug Inverse Agonism , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/radiation effects , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D2/radiation effects , Binding Sites , Cysteine/chemistry , Dopamine/metabolism , Humans , Ligands , Receptors, Dopamine D1/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...