Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 110(52): 21095-100, 2013 Dec 24.
Article in English | MEDLINE | ID: mdl-24324152

ABSTRACT

Vaccines are the most effective agents to control infections. In addition to the pathogen antigens, vaccines contain adjuvants that are used to enhance protective immune responses. However, the molecular mechanism of action of most adjuvants is ill-known, and a better understanding of adjuvanticity is needed to develop improved adjuvants based on molecular targets that further enhance vaccine efficacy. This is particularly important for tuberculosis, malaria, AIDS, and other diseases for which protective vaccines do not exist. Release of endogenous danger signals has been linked to adjuvanticity; however, the role of extracellular ATP during vaccination has never been explored. Here, we tested whether ATP release is involved in the immune boosting effect of four common adjuvants: aluminum hydroxide, calcium phosphate, incomplete Freund's adjuvant, and the oil-in-water emulsion MF59. We found that intramuscular injection is always associated with a weak transient release of ATP, which was greatly enhanced by the presence of MF59 but not by all other adjuvants tested. Local injection of apyrase, an ATP-hydrolyzing enzyme, inhibited cell recruitment in the muscle induced by MF59 but not by alum or incomplete Freund's adjuvant. In addition, apyrase strongly inhibited influenza-specific T-cell responses and hemagglutination inhibition titers in response to an MF59-adjuvanted trivalent influenza vaccine. These data demonstrate that a transient ATP release is required for innate and adaptive immune responses induced by MF59 and link extracellular ATP with an enhanced response to vaccination.


Subject(s)
Adenosine Triphosphate/metabolism , Adjuvants, Immunologic/pharmacology , CD4-Positive T-Lymphocytes/immunology , Muscle, Skeletal/metabolism , Polysorbates/pharmacology , Squalene/pharmacology , Vaccination/methods , Aluminum Hydroxide/immunology , Animals , CD4-Positive T-Lymphocytes/drug effects , Calcium Phosphates/immunology , Drug Synergism , Enzyme-Linked Immunosorbent Assay , Freund's Adjuvant/immunology , Lipids/immunology , Luminescent Measurements , Mice , Mice, Inbred BALB C , Specific Pathogen-Free Organisms , Squalene/immunology
2.
PLoS One ; 8(9): e73964, 2013.
Article in English | MEDLINE | ID: mdl-24069256

ABSTRACT

The down-regulation of miR-199 occurs in nearly all primary hepatocellular carcinomas (HCCs) and HCC cell lines in comparison with normal liver. We exploited this miR-199 differential expression to develop a conditionally replication-competent oncolytic adenovirus, Ad-199T, and achieve tumor-specific viral expression and replication. To this aim, we introduced four copies of miR-199 target sites within the 3' UTR of E1A gene, essential for viral replication. As consequence, E1A expression from Ad-199T virus was tightly regulated both at RNA and protein levels in HCC derived cell lines, and replication controlled by the level of miR-199 expression. Various approaches were used to asses in vivo properties of Ad-199T. Ad-199T replication was inhibited in normal, miR-199 positive, liver parenchyma, thus resulting in reduced hepatotoxicity. Conversely, the intrahepatic delivery of Ad-199T in newborn mice led to virus replication and fast removal of implanted HepG2 liver cancer cells. The ability of Ad-199T to control tumor growth was also shown in a subcutaneous xenograft model in nude mice and in HCCs arising in immune-competent mice. In summary, we developed a novel oncolytic adenovirus, Ad-199T, which could demonstrate a therapeutic potential against liver cancer without causing significant hepatotoxicity.


Subject(s)
Adenoviridae/genetics , Genetic Vectors/genetics , MicroRNAs/genetics , Oncolytic Viruses/genetics , 3' Untranslated Regions , Adenovirus E1A Proteins/genetics , Adenovirus E1A Proteins/metabolism , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/therapy , Cell Line, Tumor , Disease Models, Animal , Gene Expression Regulation, Viral , Gene Order , Genetic Vectors/administration & dosage , Humans , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Liver Neoplasms/therapy , Male , Mice , Mice, Transgenic , MicroRNAs/metabolism , Oncolytic Virotherapy , RNA Interference , Tumor Burden/genetics , Virus Replication , Xenograft Model Antitumor Assays
3.
Interface Focus ; 3(3): 20120101, 2013 Jun 06.
Article in English | MEDLINE | ID: mdl-23853707

ABSTRACT

Release of adenosine triphosphate (ATP) into the extracellular space occurs in response to a multiplicity of physiological and pathological stimuli in virtually all cells and tissues. A role for extracellular ATP has been identified in processes as different as neurotransmission, endocrine and exocrine secretion, smooth muscle contraction, bone metabolism, cell proliferation, immunity and inflammation. However, ATP measurement in the extracellular space has proved a daunting task until recently. To tackle this challenge, some years ago, we designed and engineered a novel luciferase probe targeted to and expressed on the outer aspect of the plasma membrane. This novel probe was constructed by appending to firefly luciferase the N-terminal leader sequence and the C-terminal glycophosphatidylinositol anchor of the folate receptor. This chimeric protein, named plasma membrane luciferase, is targeted and localized to the outer side of the plasma membrane. With this probe, we have generated stably transfected HEK293 cell clones that act as an in vitro and in vivo sensor of the extracellular ATP concentration in several disease conditions, such as experimentally induced tumours and inflammation.

4.
FASEB J ; 25(4): 1264-74, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21233486

ABSTRACT

Defects in bone homeostasis are a major health problem. Osteoclast differentiation and activation have a crucial role in bone remodeling in health and disease. Osteoclasts are bone-resorbing cells derived from mononuclear phagocyte progenitors. The key event in osteoclast formation is fusion of mononucleate precursors to form mature multinucleated osteclasts. Here we provide evidence of an absolute requirement for the P2X7 receptor, ATP release, and adenosine signaling in human osteoclast formation, as shown by the following findings: macrophage-colony stimulating factor/receptor activator for nuclear factor-κB ligand (M-CSF/RANKL)-stimulated fusion of human monocytes is fully prevented by an anti-P2X7 mAb, by specific P2X7 pharmacological antagonists, or by inhibition of CD39/NTPDase; fusion-competent monocytes release ATP via the P2X7 receptor; accelerated degradation of released ATP by addition of either apyrase or hexokinase strongly increases fusion; removal of extracellular adenosine by adenosine deaminase blocks, while addition of exogenous adenosine strongly potentiates, fusion; and pharmacologic stimulation of the adenosine A2A receptor increases, while selective A2A blockade inhibits, fusion. These results show that the purinergic axis plays a crucial and as yet undescribed role in osteoclast formation and reconcile previous evidence advocating a key role for either ATP or adenosine receptors in multinucleated giant cell formation.


Subject(s)
Adenosine/metabolism , Cell Fusion , Giant Cells/cytology , Osteoclasts/cytology , Receptors, Purinergic P2X7/physiology , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Apyrase/metabolism , Hexokinase/metabolism , Humans , RANK Ligand/metabolism , Receptor, Adenosine A2A/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...