Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 19652, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34608241

ABSTRACT

Traumatic peri-contusional penumbra represents crucial targets for therapeutic interventions after traumatic brain injury (TBI). Current resuscitative approaches may not adequately alleviate impaired cerebral microcirculation and, hence, compromise oxygen delivery to peri-contusional areas. Low-frequency oscillations in cerebral blood flow (CBF) may improve cerebral oxygenation in the setting of oxygen deprivation. However, no method has been reported to induce controllable oscillations in CBF and it hasn't been applied as a therapeutic strategy. Electrical stimulation of the trigeminal nerve (TNS) plays a pivotal role in modulating cerebrovascular tone and cerebral perfusion. We hypothesized that TNS can modulate CBF at the targeted frequency band via the trigemino-cerebrovascular network, and TNS-induced CBF oscillations would improve cerebral oxygenation in peri-contusional areas. In a rat model of TBI complicated by hemorrhagic shock, TNS-induced CBF oscillations conferred significant preservation of peri-contusional tissues leading to reduced lesion volume, attenuated hypoxic injury and neuroinflammation, increased eNOS expression, improved neurological recovery and better 10-day survival rate, despite not significantly increasing CBF as compared with those in immediate and delayed resuscitation animals. Our findings indicate that low-frequency CBF oscillations enhance cerebral oxygenation in peri-contusional areas, and play a more significant protective role than improvements in non-oscillatory cerebral perfusion or volume expansion alone.


Subject(s)
Biomarkers , Brain Injuries, Traumatic/etiology , Brain Injuries, Traumatic/metabolism , Cerebrovascular Circulation , Shock, Hemorrhagic/complications , Trigeminal Nerve/physiology , Animals , Biopsy , Brain , Brain Injuries, Traumatic/mortality , Brain Injuries, Traumatic/physiopathology , Disease Susceptibility , Fluorescent Antibody Technique , Hemodynamics , Immunohistochemistry , Inflammation Mediators , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase/metabolism , Prognosis , Rats
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 5208-5211, 2020 07.
Article in English | MEDLINE | ID: mdl-33019158

ABSTRACT

The "diving reflex" (DR) is a very powerful autonomic reflex that facilitates survival in hypoxic/anoxic conditions and could trigger multifaceted physiologic effects for the treatment of various diseases by modulating the cardiovascular, respiratory, and nervous systems. The DR can be induced by cold water or noxious gases applied to the anterior nasal mucosa and paranasal regions, which can stimulate trigeminal thermo- or chemo-receptors to send afferent signals to medullary nuclei which mediate the sympathetic and parasympathetic nervous systems. Although promising, these approaches have yet to be adopted in routine clinical practice due to the inability to precisely control exposure-response relationships, lack of reproducibility, and difficulty implementing in a clinical setting. In this study, we present the ability of electrical Trigeminal (Infraorbital) Nerve Stimulation (eTINS) to induce the DR in a dose-controllable manner. We found that eTINS not only triggered specific physiological changes compatible with the pattern of "classic" DR observed in animals/humans, but also controlled the induced-DR at varying levels. This study demonstrates, for the first time, that the intensity of the DR is controllable by dose and opens possibility to investigate its protective mechanism against various pathologies in well-controlled research settings.


Subject(s)
Diving Reflex , Animals , Electric Stimulation , Humans , Maxillary Nerve , Reflex , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...