Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 14(46): 17297-17314, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36374249

ABSTRACT

An important aspect of immunotherapy is the ability of dendritic cells (DCs) to prime T cell immunity, an approach that has yielded promising results in some early phase clinical trials. However, novel approaches are required to improve DC therapeutic efficacy by enhancing their uptake of, and activation by, disease relevant antigens. The carbon nano-material graphene oxide (GO) may provide a unique way to deliver antigen to innate immune cells and modify their ability to initiate effective adaptive immune responses. We have assessed whether GO of various lateral sizes affects DC activation and function in vitro and in vivo, including their ability to take up, process and present the well-defined model antigen ovalbumin (OVA). We have found that GO flakes are internalised by DCs, while having minimal effect on their viability, activation phenotype or cytokine production. Although adsorption of OVA protein to either small or large GO flakes promoted its uptake into DCs, large GO interfered with OVA processing. In terms of modulation of DC function, delivery of OVA via small GO flakes significantly enhanced DC ability to induce proliferation of OVA-specific CD4+ T cells, promoting granzyme B secretion in vitro. On the other hand, delivery of OVA via large GO flakes augmented DC ability to induce proliferation of OVA-specific CD8+ T cells, and their production of IFN-γ and granzyme B. Together, these data demonstrate the capacity of GO of different lateral dimensions to act as a promising delivery platform for DC modulation of distinct facets of the adaptive immune response, information that could be exploited for future development of targeted immunotherapies.


Subject(s)
CD8-Positive T-Lymphocytes , Dendritic Cells , Animals , Mice , Granzymes/metabolism , Ovalbumin , Antigens , Cytokines/metabolism , Mice, Inbred C57BL
2.
Immunology ; 164(4): 737-753, 2021 12.
Article in English | MEDLINE | ID: mdl-34407221

ABSTRACT

Experimental cerebral malaria (ECM) is a severe complication of Plasmodium berghei ANKA (PbA) infection in mice, characterized by CD8+ T-cell accumulation within the brain. Whilst the dynamics of CD8+ T-cell activation and migration during extant primary PbA infection have been extensively researched, the fate of the parasite-specific CD8+ T cells upon resolution of ECM is not understood. In this study, we show that memory OT-I cells persist systemically within the spleen, lung and brain following recovery from ECM after primary PbA-OVA infection. Whereas memory OT-I cells within the spleen and lung exhibited canonical central memory (Tcm) and effector memory (Tem) phenotypes, respectively, memory OT-I cells within the brain post-PbA-OVA infection displayed an enriched CD69+ CD103- profile and expressed low levels of T-bet. OT-I cells within the brain were excluded from short-term intravascular antibody labelling but were targeted effectively by longer-term systemically administered antibodies. Thus, the memory OT-I cells were extravascular within the brain post-ECM but were potentially not resident memory cells. Importantly, whilst memory OT-I cells exhibited strong reactivation during secondary PbA-OVA infection, preventing activation of new primary effector T cells, they had dampened reactivation during a fourth PbA-OVA infection. Overall, our results demonstrate that memory CD8+ T cells are systemically distributed but exhibit a unique phenotype within the brain post-ECM, and that their reactivation characteristics are shaped by infection history. Our results raise important questions regarding the role of distinct memory CD8+ T-cell populations within the brain and other tissues during repeat Plasmodium infections.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Host-Parasite Interactions/immunology , Malaria/immunology , Malaria/parasitology , Plasmodium berghei/physiology , Animals , Biomarkers , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Chemotaxis, Leukocyte/immunology , Disease Susceptibility , Epitopes, T-Lymphocyte/immunology , Erythrocytes/immunology , Erythrocytes/parasitology , Extracellular Matrix , Immunologic Memory , Immunophenotyping , Life Cycle Stages , Lymphocyte Activation/immunology , Malaria/metabolism , Malaria/pathology , Malaria, Cerebral/immunology , Malaria, Cerebral/metabolism , Malaria, Cerebral/parasitology , Mice , Mice, Transgenic , Organ Specificity/immunology
3.
Chem Commun (Camb) ; 56(89): 13792-13795, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33078185

ABSTRACT

Amino acids modified with an N-terminal anthracene group self-assemble into supramolecular hydrogels upon the addition of a range of salts or cell culture medium. Gel-phase photo-dimerisation of gelators results in hydrogel disassembly and was used to recover cells from 3D culture.

4.
J Immunol ; 205(6): 1608-1619, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32817333

ABSTRACT

CD4+ T cell functional inhibition (exhaustion) is a hallmark of malaria and correlates with impaired parasite control and infection chronicity. However, the mechanisms of CD4+ T cell exhaustion are still poorly understood. In this study, we show that Ag-experienced (Ag-exp) CD4+ T cell exhaustion during Plasmodium yoelii nonlethal infection occurs alongside the reduction in mammalian target of rapamycin (mTOR) activity and restriction in CD4+ T cell glycolytic capacity. We demonstrate that the loss of glycolytic metabolism and mTOR activity within the exhausted Ag-expCD4+ T cell population during infection coincides with reduction in T-bet expression. T-bet was found to directly bind to and control the transcription of various mTOR and metabolism-related genes within effector CD4+ T cells. Consistent with this, Ag-expTh1 cells exhibited significantly higher and sustained mTOR activity than effector T-bet- (non-Th1) Ag-expT cells throughout the course of malaria. We identified mTOR to be redundant for sustaining T-bet expression in activated Th1 cells, whereas mTOR was necessary but not sufficient for maintaining IFN-γ production by Th1 cells. Immunotherapy targeting PD-1, CTLA-4, and IL-27 blocked CD4+ T cell exhaustion during malaria infection and was associated with elevated T-bet expression and a concomitant increased CD4+ T cell glycolytic metabolism. Collectively, our data suggest that mTOR activity is linked to T-bet in Ag-expCD4+ T cells but that reduction in mTOR activity may not directly underpin Ag-expTh1 cell loss and exhaustion during malaria infection. These data have implications for therapeutic reactivation of exhausted CD4+ T cells during malaria infection and other chronic conditions.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Immune Checkpoint Inhibitors/therapeutic use , Malaria/immunology , Mechanistic Target of Rapamycin Complex 1/metabolism , Plasmodium yoelii/physiology , T-Box Domain Proteins/metabolism , Th1 Cells/immunology , Animals , Cellular Senescence , Gene Expression Regulation , Glycolysis , Humans , Immune Tolerance , Immunologic Memory , Interferon-gamma/metabolism , Interleukin-27/metabolism , Lymphocyte Activation , Malaria/therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Box Domain Proteins/genetics
5.
Parasite Immunol ; 42(9): e12723, 2020 09.
Article in English | MEDLINE | ID: mdl-32306409

ABSTRACT

AIMS: Co-inhibitory receptors play a major role in controlling the Th1 response during blood-stage malaria. Whilst PD-1 is viewed as the dominant co-inhibitory receptor restricting T cell responses, the roles of other such receptors in coordinating Th1 cell activity during malaria are poorly understood. METHODS AND RESULTS: Here, we show that the co-inhibitory receptor Tim-3 is expressed on splenic antigen-specific T-bet+ (Th1) OT-II cells transiently during the early stage of infection with transgenic Plasmodium yoelii NL parasites expressing ovalbumin (P yoelii NL-OVA). We reveal that co-blockade of Tim-3 and PD-L1 during the acute phase of P yoelii NL infection did not improve the Th1 cell response but instead led to a specific reduction in the numbers of splenic Th1 OT-II cells. Combined blockade of Tim-3 and PD-L1 did elevate anti-parasite IgG antibody responses. Nevertheless, co-blockade of Tim-3 and PD-L1 did not affect IFN-γ production by OT-II cells and did not influence parasite control during P yoelii NL-OVA infection. CONCLUSION: Thus, our results show that Tim-3 plays an unexpected combinatorial role with PD-1 in promoting and/ or sustaining a Th1 cell response during the early phase of blood-stage P. yoelii NL infection but combined blockade does not dramatically influence anti-parasite immunity.


Subject(s)
Hepatitis A Virus Cellular Receptor 2/immunology , Malaria/immunology , Programmed Cell Death 1 Receptor/immunology , Th1 Cells/immunology , Animals , B7-H1 Antigen , Cell Line , Epitopes/immunology , Malaria/parasitology , Male , Mice, Inbred C57BL , Spleen/immunology
6.
Proc Natl Acad Sci U S A ; 115(28): 7404-7409, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29954866

ABSTRACT

Cerebral malaria (CM) is a serious neurological complication caused by Plasmodium falciparum infection. Currently, the only treatment for CM is the provision of antimalarial drugs; however, such treatment by itself often fails to prevent death or development of neurological sequelae. To identify potential improved treatments for CM, we performed a nonbiased whole-brain transcriptomic time-course analysis of antimalarial drug chemotherapy of murine experimental CM (ECM). Bioinformatics analyses revealed IL33 as a critical regulator of neuroinflammation and cerebral pathology that is down-regulated in the brain during fatal ECM and in the acute period following treatment of ECM. Consistent with this, administration of IL33 alongside antimalarial drugs significantly improved the treatment success of established ECM. Mechanistically, IL33 treatment reduced inflammasome activation and IL1ß production in microglia and intracerebral monocytes in the acute recovery period following treatment of ECM. Moreover, treatment with the NLRP3-inflammasome inhibitor MCC950 alongside antimalarial drugs phenocopied the protective effect of IL33 therapy in improving the recovery from established ECM. We further showed that IL1ß release from macrophages was stimulated by hemozoin and antimalarial drugs and that this was inhibited by MCC950. Our results therefore demonstrate that manipulation of the IL33-NLRP3 axis may be an effective therapy to suppress neuroinflammation and improve the efficacy of antimalarial drug treatment of CM.


Subject(s)
Antimalarials/pharmacology , Brain/parasitology , Drug Delivery Systems/methods , Interleukin-33/metabolism , Malaria, Cerebral/drug therapy , Malaria, Falciparum/drug therapy , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Plasmodium falciparum/metabolism , Animals , Brain/metabolism , Brain/pathology , Disease Models, Animal , Female , Gene Expression Profiling , Hemeproteins/metabolism , Interleukin-1beta/biosynthesis , Interleukin-33/antagonists & inhibitors , Macrophages/metabolism , Macrophages/pathology , Malaria, Cerebral/metabolism , Malaria, Cerebral/pathology , Malaria, Falciparum/metabolism , Malaria, Falciparum/pathology , Male , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Transcriptome/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...