Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4517, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806479

ABSTRACT

Networks of nanowires, nanotubes, and nanosheets are important for many applications in printed electronics. However, the network conductivity and mobility are usually limited by the resistance between the particles, often referred to as the junction resistance. Minimising the junction resistance has proven to be challenging, partly because it is difficult to measure. Here, we develop a simple model for electrical conduction in networks of 1D or 2D nanomaterials that allows us to extract junction and nanoparticle resistances from particle-size-dependent DC network resistivity data. We find junction resistances in porous networks to scale with nanoparticle resistivity and vary from 5 Ω for silver nanosheets to 24 GΩ for WS2 nanosheets. Moreover, our model allows junction and nanoparticle resistances to be obtained simultaneously from AC impedance spectra of semiconducting nanosheet networks. Through our model, we use the impedance data to directly link the high mobility of aligned networks of electrochemically exfoliated MoS2 nanosheets (≈ 7 cm2 V-1 s-1) to low junction resistances of ∼2.3 MΩ. Temperature-dependent impedance measurements also allow us to comprehensively investigate transport mechanisms within the network and quantitatively differentiate intra-nanosheet phonon-limited bandlike transport from inter-nanosheet hopping.

2.
Small ; : e2310954, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38591858

ABSTRACT

Constructing a semi-permanent base on the moon or Mars will require maximal use of materials found in situ and minimization of materials and equipment transported from Earth. This will mean a heavy reliance on regolith (Lunar or Marian soil) and water, supplemented by small quantities of additives fabricated on Earth. Here it is shown that SiO2-based powders, as well as Lunar and Martian regolith simulants, can be fabricated into building materials at near-ambient temperatures using only a few weight-percent of carbon nanotubes as a binder. These composites have compressive strength and toughness up to 100 MPa and 3 MPa respectively, higher than the best terrestrial concretes. They are electrically conductive (>20 S m-1) and display an extremely large piezoresistive response (gauge factor >600), allowing these composites to be used as internal sensors to monitor the structural health of extra-terrestrial buildings.

3.
Small Methods ; : e2301654, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602193

ABSTRACT

Wearable devices have generally been rigid due to their reliance on silicon-based technologies, while future wearables will utilize flexible components for example transistors within microprocessors to manage data. Two-dimensional (2D) semiconducting flakes have yet to be investigated in fiber transistors but can offer a route toward high-mobility, biocompatible, and flexible fiber-based devices. Here, the electrochemical exfoliation of semiconducting 2D flakes of tungsten diselenide (WSe2) and molybdenum disulfide (MoS2) is shown to achieve homogeneous coatings onto the surface of polyester fibers. The high aspect ratio (>100) of the flake yields aligned and conformal flake-to-flake junctions on polyester fibers enabling transistors with mobilities µ ≈1 cm2 V-1 s-1 and a current on/off ratio, Ion/Ioff ≈102-104. Furthermore, the cytotoxic effects of the MoS2 and WSe2 flakes with human keratinocyte cells are investigated and found to be biocompatible. As an additional step, a unique transistor 'knot' architecture is created by leveraging the fiber diameter to establish the length of the transistor channel, facilitating a route to scale down transistor channel dimensions (≈100 µm) and utilize it to make a MoS2 fiber transistor with a human hair that achieves mobilities as high as µ ≈15 cm2 V-1 s-1.

4.
Nat Commun ; 15(1): 278, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177181

ABSTRACT

Networks of solution-processed nanomaterials are becoming increasingly important across applications in electronics, sensing and energy storage/generation. Although the physical properties of these devices are often completely dominated by network morphology, the network structure itself remains difficult to interrogate. Here, we utilise focused ion beam - scanning electron microscopy nanotomography (FIB-SEM-NT) to quantitatively characterise the morphology of printed nanostructured networks and their devices using nanometre-resolution 3D images. The influence of nanosheet/nanowire size on network structure in printed films of graphene, WS2 and silver nanosheets (AgNSs), as well as networks of silver nanowires (AgNWs), is investigated. We present a comprehensive toolkit to extract morphological characteristics including network porosity, tortuosity, specific surface area, pore dimensions and nanosheet orientation, which we link to network resistivity. By extending this technique to interrogate the structure and interfaces within printed vertical heterostacks, we demonstrate the potential of this technique for device characterisation and optimisation.

5.
Adv Mater ; 36(9): e2306954, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37812735

ABSTRACT

Thin film networks of solution processed nanosheets show remarkable promise for use in a broad range of applications including strain sensors, energy storage, printed devices, textile electronics, and more. While it is known that their electronic properties rely heavily on their morphology, little is known of their mechanical nature, a glaring omission given the effect mechanical deformation has on the morphology of porous systems and the promise of mechanical post processing for tailored properties. Here, this work employs a recent advance in thin film mechanical testing called the Layer Compression Test to perform the first in situ analysis of printed nanosheet network compression. Due to the well-defined deformation geometry of this unique test, this work is able to explore the out-of-plane elastic, plastic, and creep deformation in these systems, extracting properties of elastic modulus, plastic yield, viscoelasticity, tensile failure and sheet bending vs. slippage under both out of plane uniaxial compression and tension. This work characterizes these for a range of networks of differing porosities and sheet sizes, for low and high compression, as well as the effect of chemical cross linking. This work explores graphene and MoS2 networks, from which the results can be extended to printed nanosheet networks as a whole.

6.
Small ; : e2304735, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37735147

ABSTRACT

Solution-processed photodetectors incorporating liquid-phase-exfoliated transition metal dichalcogenide nanosheets are widely reported. However, previous studies mainly focus on the fabrication of photoconductors, rather than photodiodes which tend to be based on heterojunctions and are harder to fabricate. Especially, there are rare reports on introducing commonly used transport layers into heterojunctions based on nanosheet networks. In this study, a reliable solution-processing method is reported to fabricate heterojunction diodes with tungsten selenide (WSe2 ) nanosheets as the optical absorbing material and PEDOT: PSS and ZnO as injection/transport-layer materials. By varying the transport layer combinations, the obtained heterojunctions show rectification ratios of up to ≈104 at ±1 V in the dark, without relying on heavily doped silicon substrates. Upon illumination, the heterojunction can be operated in both photoconductor and photodiode modes and displays self-powered behaviors at zero bias.

7.
ACS Appl Mater Interfaces ; 15(33): 39864-39871, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37561092

ABSTRACT

Transparent conductors (TCs) represent key components in many applications from optoelectronic devices to electromagnetic shielding. While commercial applications typically use thin films of indium tin oxide, this material is brittle and increasingly scarce, meaning higher performing and cheaper alternatives are sought after. Solution-processible metals would be ideal owing to their high conductivities and printability. However, due to their opacity to visible light, such films need to be very thin to achieve transparency, thus limiting the minimum resistance achievable. One solution is to print metallic particles in a grid structure, which has the advantages of high tunable transparency and resistance at the cost of uniformity. Here, we report silver nanosheets that have been aerosol jet printed into grids as high-performance transparent conductors. We first investigate the effect of annealing on the silver nanosheets where we observe the onset of junction sintering at 160 °C after which the silver network becomes continuous. We then investigate the effect of line width and thickness on the electrical performance and the effect of varying the aperture dimensions on the optical performance. Using these data, we develop simple models, which allow us to optimize the grid and demonstrate a printed transparent conductor with a transmittance of 91% at a sheet resistance of 4.6 Ω/sq.

8.
Nanoscale ; 14(42): 15679-15690, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36263752

ABSTRACT

Vertically stacked metal-semiconductor-metal heterostructures, based on liquid-processed nanomaterials, hold great potential for various printed electronic applications. Here we describe the fabrication of such devices by spray-coating semiconducting tungsten disulfide (WS2) nanosheets onto indium tin oxide (ITO) bottom electrodes, followed by spraying single-walled carbon nanotubes (SWNTs) as the top electrode. Depending on the formulation of the SWNTs ink, we could fabricate either Ohmic or Schottky contacts at the WS2/SWNTs interface. Using isopropanol-dispersed SWNTs led to Ohmic contacts and bulk-limited devices, characterized by out-of-plane conductivities of ∼10-4 S m-1. However, when aqueous SWNTs inks were used, rectification was observed, due to the formation of a doping-induced Schottky barrier at the WS2/SWNTs interface. For thin WS2 layers, such devices were characterized by a barrier height of ∼0.56 eV. However, increasing the WS2 film thickness led to increased series resistance, leading to a change-over from electrode-limited to bulk-limited behavior at a transition thickness of ∼2.6 µm. This work demonstrates that Ohmic/Schottky behavior is tunable and lays the foundation for fabricating large-area 2D nanosheet-based solution-deposited devices and stacks.

SELECTION OF CITATIONS
SEARCH DETAIL
...