Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Oncotarget ; 5(2): 438-50, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24509483

ABSTRACT

Retinoblastoma is a rare childhood cancer of the developing retina. Most retinoblastomas initiate with biallelic inactivation of the RB1 gene through diverse mechanisms including point mutations, nucleotide insertions, deletions, loss of heterozygosity and promoter hypermethylation. Recently, a novel mechanism of retinoblastoma initiation was proposed. Gallie and colleagues discovered that a small proportion of retinoblastomas lack RB1 mutations and had MYCN amplification [1]. In this study, we identified recurrent chromosomal, regional and focal genomic lesions in 94 primary retinoblastomas with their matched normal DNA using SNP 6.0 chips. We also analyzed the RB1 gene mutations and compared the mechanism of RB1 inactivation to the recurrent copy number variations in the retinoblastoma genome. In addition to the previously described focal amplification of MYCN and deletions in RB1 and BCOR, we also identified recurrent focal amplification of OTX2, a transcription factor required for retinal photoreceptor development. We identified 10 retinoblastomas in our cohort that lacked RB1 point mutations or indels. We performed whole genome sequencing on those 10 tumors and their corresponding germline DNA. In one of the tumors, the RB1 gene was unaltered, the MYCN gene was amplified and RB1 protein was expressed in the nuclei of the tumor cells. In addition, several tumors had complex patterns of structural variations and we identified 3 tumors with chromothripsis at the RB1 locus. This is the first report of chromothripsis as a mechanism for RB1 gene inactivation in cancer.


Subject(s)
Chromosome Aberrations , Genes, Retinoblastoma , Oncogene Proteins/genetics , Retinal Neoplasms/genetics , Retinoblastoma Protein/genetics , Retinoblastoma/genetics , Gene Expression , Gene Expression Regulation, Neoplastic , Gene Silencing , Humans , Oncogene Proteins/metabolism , Retinoblastoma/metabolism , Retinoblastoma/pathology , Retinoblastoma Protein/metabolism
2.
Nat Methods ; 10(12): 1209-10, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24122041

ABSTRACT

The Drug-Gene Interaction database (DGIdb) mines existing resources that generate hypotheses about how mutated genes might be targeted therapeutically or prioritized for drug development. It provides an interface for searching lists of genes against a compendium of drug-gene interactions and potentially 'druggable' genes. DGIdb can be accessed at http://dgidb.org/.


Subject(s)
Data Mining/methods , Databases, Genetic , Drug Discovery/methods , Antineoplastic Agents/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Computational Biology/methods , Drug Interactions , Gene Expression Regulation/drug effects , Genetic Variation , Genome , Genomics/methods , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Software , Technology, Pharmaceutical/methods
3.
Nat Genet ; 45(6): 602-12, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23583981

ABSTRACT

The most common pediatric brain tumors are low-grade gliomas (LGGs). We used whole-genome sequencing to identify multiple new genetic alterations involving BRAF, RAF1, FGFR1, MYB, MYBL1 and genes with histone-related functions, including H3F3A and ATRX, in 39 LGGs and low-grade glioneuronal tumors (LGGNTs). Only a single non-silent somatic alteration was detected in 24 of 39 (62%) tumors. Intragenic duplications of the portion of FGFR1 encoding the tyrosine kinase domain (TKD) and rearrangements of MYB were recurrent and mutually exclusive in 53% of grade II diffuse LGGs. Transplantation of Trp53-null neonatal astrocytes expressing FGFR1 with the duplication involving the TKD into the brains of nude mice generated high-grade astrocytomas with short latency and 100% penetrance. FGFR1 with the duplication induced FGFR1 autophosphorylation and upregulation of the MAPK/ERK and PI3K pathways, which could be blocked by specific inhibitors. Focusing on the therapeutically challenging diffuse LGGs, our study of 151 tumors has discovered genetic alterations and potential therapeutic targets across the entire range of pediatric LGGs and LGGNTs.


Subject(s)
Brain Neoplasms/genetics , Glioma/genetics , Adolescent , Animals , Base Sequence , Brain Neoplasms/pathology , Child , Child, Preschool , Female , Gene Duplication , Gene Rearrangement , Genes, myb , Genome-Wide Association Study , Glioma/pathology , Humans , Infant , Male , Mice , Mice, Nude , Molecular Sequence Data , Mutation , Neoplasm Grading , Neoplasm Transplantation , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins B-raf , Receptor, Fibroblast Growth Factor, Type 1/genetics , Sequence Analysis, DNA , Signal Transduction , Trans-Activators/genetics , Transcriptome
4.
Nat Genet ; 45(3): 242-52, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23334668

ABSTRACT

The genetic basis of hypodiploid acute lymphoblastic leukemia (ALL), a subtype of ALL characterized by aneuploidy and poor outcome, is unknown. Genomic profiling of 124 hypodiploid ALL cases, including whole-genome and exome sequencing of 40 cases, identified two subtypes that differ in the severity of aneuploidy, transcriptional profiles and submicroscopic genetic alterations. Near-haploid ALL with 24-31 chromosomes harbor alterations targeting receptor tyrosine kinase signaling and Ras signaling (71%) and the lymphoid transcription factor gene IKZF3 (encoding AIOLOS; 13%). In contrast, low-hypodiploid ALL with 32-39 chromosomes are characterized by alterations in TP53 (91.2%) that are commonly present in nontumor cells, IKZF2 (encoding HELIOS; 53%) and RB1 (41%). Both near-haploid and low-hypodiploid leukemic cells show activation of Ras-signaling and phosphoinositide 3-kinase (PI3K)-signaling pathways and are sensitive to PI3K inhibitors, indicating that these drugs should be explored as a new therapeutic strategy for this aggressive form of leukemia.


Subject(s)
Aneuploidy , Chromosome Aberrations , Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Animals , Base Sequence , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Haploidy , Humans , Ikaros Transcription Factor/genetics , Ikaros Transcription Factor/metabolism , Mice , Molecular Sequence Data , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism , Signal Transduction , Transplantation, Heterologous , Treatment Outcome , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
5.
Cell ; 150(6): 1121-34, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22980976

ABSTRACT

We report the results of whole-genome and transcriptome sequencing of tumor and adjacent normal tissue samples from 17 patients with non-small cell lung carcinoma (NSCLC). We identified 3,726 point mutations and more than 90 indels in the coding sequence, with an average mutation frequency more than 10-fold higher in smokers than in never-smokers. Novel alterations in genes involved in chromatin modification and DNA repair pathways were identified, along with DACH1, CFTR, RELN, ABCB5, and HGF. Deep digital sequencing revealed diverse clonality patterns in both never-smokers and smokers. All validated EFGR and KRAS mutations were present in the founder clones, suggesting possible roles in cancer initiation. Analysis revealed 14 fusions, including ROS1 and ALK, as well as novel metabolic enzymes. Cell-cycle and JAK-STAT pathways are significantly altered in lung cancer, along with perturbations in 54 genes that are potentially targetable with currently available drugs.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Smoking/genetics , Smoking/pathology , Carcinoma, Non-Small-Cell Lung/therapy , Chromosome Aberrations , Female , Gene Expression Profiling , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Humans , INDEL Mutation , Lung Neoplasms/therapy , Male , Molecular Targeted Therapy , Point Mutation , Reelin Protein
6.
Cell ; 150(2): 264-78, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22817890

ABSTRACT

Most mutations in cancer genomes are thought to be acquired after the initiating event, which may cause genomic instability and drive clonal evolution. However, for acute myeloid leukemia (AML), normal karyotypes are common, and genomic instability is unusual. To better understand clonal evolution in AML, we sequenced the genomes of M3-AML samples with a known initiating event (PML-RARA) versus the genomes of normal karyotype M1-AML samples and the exomes of hematopoietic stem/progenitor cells (HSPCs) from healthy people. Collectively, the data suggest that most of the mutations found in AML genomes are actually random events that occurred in HSPCs before they acquired the initiating mutation; the mutational history of that cell is "captured" as the clone expands. In many cases, only one or two additional, cooperating mutations are needed to generate the malignant founding clone. Cells from the founding clone can acquire additional cooperating mutations, yielding subclones that can contribute to disease progression and/or relapse.


Subject(s)
Clonal Evolution , Leukemia, Myeloid, Acute/genetics , Mutation , Adult , Aged , DNA Mutational Analysis , Disease Progression , Female , Genome-Wide Association Study , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/physiopathology , Male , Middle Aged , Oncogene Proteins, Fusion/genetics , Recurrence , Skin/metabolism , Young Adult
7.
Genome Res ; 22(8): 1589-98, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22759861

ABSTRACT

Massively parallel sequencing technology and the associated rapidly decreasing sequencing costs have enabled systemic analyses of somatic mutations in large cohorts of cancer cases. Here we introduce a comprehensive mutational analysis pipeline that uses standardized sequence-based inputs along with multiple types of clinical data to establish correlations among mutation sites, affected genes and pathways, and to ultimately separate the commonly abundant passenger mutations from the truly significant events. In other words, we aim to determine the Mutational Significance in Cancer (MuSiC) for these large data sets. The integration of analytical operations in the MuSiC framework is widely applicable to a broad set of tumor types and offers the benefits of automation as well as standardization. Herein, we describe the computational structure and statistical underpinnings of the MuSiC pipeline and demonstrate its performance using 316 ovarian cancer samples from the TCGA ovarian cancer project. MuSiC correctly confirms many expected results, and identifies several potentially novel avenues for discovery.


Subject(s)
DNA Mutational Analysis/methods , Molecular Sequence Annotation/methods , Mutation , Ovarian Neoplasms/genetics , Software , Algorithms , BRCA1 Protein/genetics , Computational Biology/methods , DNA Mutational Analysis/standards , Female , Genes, Neoplasm , Humans , Reproducibility of Results
8.
Nature ; 488(7409): 43-8, 2012 Aug 02.
Article in English | MEDLINE | ID: mdl-22722829

ABSTRACT

Medulloblastoma is a malignant childhood brain tumour comprising four discrete subgroups. Here, to identify mutations that drive medulloblastoma, we sequenced the entire genomes of 37 tumours and matched normal blood. One-hundred and thirty-six genes harbouring somatic mutations in this discovery set were sequenced in an additional 56 medulloblastomas. Recurrent mutations were detected in 41 genes not yet implicated in medulloblastoma; several target distinct components of the epigenetic machinery in different disease subgroups, such as regulators of H3K27 and H3K4 trimethylation in subgroups 3 and 4 (for example, KDM6A and ZMYM3), and CTNNB1-associated chromatin re-modellers in WNT-subgroup tumours (for example, SMARCA4 and CREBBP). Modelling of mutations in mouse lower rhombic lip progenitors that generate WNT-subgroup tumours identified genes that maintain this cell lineage (DDX3X), as well as mutated genes that initiate (CDH1) or cooperate (PIK3CA) in tumorigenesis. These data provide important new insights into the pathogenesis of medulloblastoma subgroups and highlight targets for therapeutic development.


Subject(s)
Cerebellar Neoplasms/classification , Cerebellar Neoplasms/genetics , Medulloblastoma/classification , Medulloblastoma/genetics , Mutation/genetics , Animals , Antigens, CD , CREB-Binding Protein/genetics , Cadherins/genetics , Cdh1 Proteins , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/genetics , Cell Lineage , Cerebellar Neoplasms/pathology , Child , Class I Phosphatidylinositol 3-Kinases , DEAD-box RNA Helicases/genetics , DNA Copy Number Variations , DNA Helicases/genetics , DNA Mutational Analysis , Disease Models, Animal , Genome, Human/genetics , Genomics , Hedgehog Proteins/metabolism , Histone Demethylases/genetics , Histones/metabolism , Humans , Medulloblastoma/pathology , Methylation , Mice , Nuclear Proteins/genetics , Phosphatidylinositol 3-Kinases/genetics , Transcription Factors/genetics , Wnt Proteins/metabolism , beta Catenin/genetics
9.
N Engl J Med ; 366(12): 1090-8, 2012 Mar 22.
Article in English | MEDLINE | ID: mdl-22417201

ABSTRACT

BACKGROUND: The myelodysplastic syndromes are a group of hematologic disorders that often evolve into secondary acute myeloid leukemia (AML). The genetic changes that underlie progression from the myelodysplastic syndromes to secondary AML are not well understood. METHODS: We performed whole-genome sequencing of seven paired samples of skin and bone marrow in seven subjects with secondary AML to identify somatic mutations specific to secondary AML. We then genotyped a bone marrow sample obtained during the antecedent myelodysplastic-syndrome stage from each subject to determine the presence or absence of the specific somatic mutations. We identified recurrent mutations in coding genes and defined the clonal architecture of each pair of samples from the myelodysplastic-syndrome stage and the secondary-AML stage, using the allele burden of hundreds of mutations. RESULTS: Approximately 85% of bone marrow cells were clonal in the myelodysplastic-syndrome and secondary-AML samples, regardless of the myeloblast count. The secondary-AML samples contained mutations in 11 recurrently mutated genes, including 4 genes that have not been previously implicated in the myelodysplastic syndromes or AML. In every case, progression to acute leukemia was defined by the persistence of an antecedent founding clone containing 182 to 660 somatic mutations and the outgrowth or emergence of at least one subclone, harboring dozens to hundreds of new mutations. All founding clones and subclones contained at least one mutation in a coding gene. CONCLUSIONS: Nearly all the bone marrow cells in patients with myelodysplastic syndromes and secondary AML are clonally derived. Genetic evolution of secondary AML is a dynamic process shaped by multiple cycles of mutation acquisition and clonal selection. Recurrent gene mutations are found in both founding clones and daughter subclones. (Funded by the National Institutes of Health and others.).


Subject(s)
Bone Marrow Cells/pathology , Cell Transformation, Neoplastic/genetics , Leukemia, Myeloid, Acute/genetics , Mutation , Myelodysplastic Syndromes/genetics , Adolescent , Adult , Clone Cells , Genome, Human , Humans , Leukemia, Myeloid, Acute/etiology , Middle Aged , Myelodysplastic Syndromes/complications , Oligonucleotide Array Sequence Analysis , Skin , Young Adult
10.
Nature ; 481(7381): 329-34, 2012 Jan 11.
Article in English | MEDLINE | ID: mdl-22237022

ABSTRACT

Retinoblastoma is an aggressive childhood cancer of the developing retina that is initiated by the biallelic loss of RB1. Tumours progress very quickly following RB1 inactivation but the underlying mechanism is not known. Here we show that the retinoblastoma genome is stable, but that multiple cancer pathways can be epigenetically deregulated. To identify the mutations that cooperate with RB1 loss, we performed whole-genome sequencing of retinoblastomas. The overall mutational rate was very low; RB1 was the only known cancer gene mutated. We then evaluated the role of RB1 in genome stability and considered non-genetic mechanisms of cancer pathway deregulation. For example, the proto-oncogene SYK is upregulated in retinoblastoma and is required for tumour cell survival. Targeting SYK with a small-molecule inhibitor induced retinoblastoma tumour cell death in vitro and in vivo. Thus, retinoblastomas may develop quickly as a result of the epigenetic deregulation of key cancer pathways as a direct or indirect result of RB1 loss.


Subject(s)
Epigenesis, Genetic/genetics , Genomics , Molecular Targeted Therapy , Protein Kinase Inhibitors/pharmacology , Retinoblastoma/drug therapy , Retinoblastoma/genetics , Aneuploidy , Animals , Cell Death/drug effects , Cell Line , Cell Survival/drug effects , Chromosomal Instability/genetics , Gene Expression Regulation, Neoplastic , Genes, Retinoblastoma/genetics , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mutation/genetics , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Mas , Retinoblastoma/pathology , Retinoblastoma Protein/deficiency , Retinoblastoma Protein/genetics , Sequence Analysis, DNA , Syk Kinase , Xenograft Model Antitumor Assays
11.
Nature ; 481(7382): 506-10, 2012 Jan 11.
Article in English | MEDLINE | ID: mdl-22237025

ABSTRACT

Most patients with acute myeloid leukaemia (AML) die from progressive disease after relapse, which is associated with clonal evolution at the cytogenetic level. To determine the mutational spectrum associated with relapse, we sequenced the primary tumour and relapse genomes from eight AML patients, and validated hundreds of somatic mutations using deep sequencing; this allowed us to define clonality and clonal evolution patterns precisely at relapse. In addition to discovering novel, recurrently mutated genes (for example, WAC, SMC3, DIS3, DDX41 and DAXX) in AML, we also found two major clonal evolution patterns during AML relapse: (1) the founding clone in the primary tumour gained mutations and evolved into the relapse clone, or (2) a subclone of the founding clone survived initial therapy, gained additional mutations and expanded at relapse. In all cases, chemotherapy failed to eradicate the founding clone. The comparison of relapse-specific versus primary tumour mutations in all eight cases revealed an increase in transversions, probably due to DNA damage caused by cytotoxic chemotherapy. These data demonstrate that AML relapse is associated with the addition of new mutations and clonal evolution, which is shaped, in part, by the chemotherapy that the patients receive to establish and maintain remissions.


Subject(s)
Clonal Evolution/genetics , Genome, Human/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Clone Cells/drug effects , Clone Cells/metabolism , Clone Cells/pathology , DNA Damage/drug effects , DNA Mutational Analysis , Genes, Neoplasm/genetics , Genome, Human/drug effects , High-Throughput Nucleotide Sequencing , Humans , Leukemia, Myeloid, Acute/drug therapy , Mutagenesis/drug effects , Mutagenesis/genetics , Recurrence , Reproducibility of Results
12.
Bioinformatics ; 28(3): 311-7, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22155872

ABSTRACT

MOTIVATION: The sequencing of tumors and their matched normals is frequently used to study the genetic composition of cancer. Despite this fact, there remains a dearth of available software tools designed to compare sequences in pairs of samples and identify sites that are likely to be unique to one sample. RESULTS: In this article, we describe the mathematical basis of our SomaticSniper software for comparing tumor and normal pairs. We estimate its sensitivity and precision, and present several common sources of error resulting in miscalls. AVAILABILITY AND IMPLEMENTATION: Binaries are freely available for download at http://gmt.genome.wustl.edu/somatic-sniper/current/, implemented in C and supported on Linux and Mac OS X. CONTACT: delarson@wustl.edu; lding@wustl.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Neoplasms/genetics , Point Mutation , Software , Genome, Human , Humans , Polymorphism, Single Nucleotide
13.
Nat Genet ; 44(1): 53-7, 2011 Dec 11.
Article in English | MEDLINE | ID: mdl-22158538

ABSTRACT

Myelodysplastic syndromes (MDS) are hematopoietic stem cell disorders that often progress to chemotherapy-resistant secondary acute myeloid leukemia (sAML). We used whole-genome sequencing to perform an unbiased comprehensive screen to discover the somatic mutations in a sample from an individual with sAML and genotyped the loci containing these mutations in the matched MDS sample. Here we show that a missense mutation affecting the serine at codon 34 (Ser34) in U2AF1 was recurrently present in 13 out of 150 (8.7%) subjects with de novo MDS, and we found suggestive evidence of an increased risk of progression to sAML associated with this mutation. U2AF1 is a U2 auxiliary factor protein that recognizes the AG splice acceptor dinucleotide at the 3' end of introns, and the alterations in U2AF1 are located in highly conserved zinc fingers of this protein. Mutant U2AF1 promotes enhanced splicing and exon skipping in reporter assays in vitro. This previously unidentified, recurrent mutation in U2AF1 implicates altered pre-mRNA splicing as a potential mechanism for MDS pathogenesis.


Subject(s)
Mutation, Missense , Myelodysplastic Syndromes/genetics , Nuclear Proteins/genetics , Ribonucleoproteins/genetics , Adult , Aged , Aged, 80 and over , Base Sequence , Disease Progression , Female , Humans , Male , Middle Aged , Molecular Sequence Data , RNA Splicing , Splicing Factor U2AF
14.
Genome Biol ; 12(3): R31, 2011.
Article in English | MEDLINE | ID: mdl-21453517

ABSTRACT

The unparalleled efficiency of next-generation sequencing (NGS) has prompted widespread adoption, but significant problems remain in the use of NGS data for whole genome assembly. We explore the advantages and disadvantages of chicken genome assemblies generated using a variety of sequencing and assembly methodologies. NGS assemblies are equivalent in some ways to a Sanger-based assembly yet deficient in others. Nonetheless, these assemblies are sufficient for the identification of the majority of genes and can reveal novel sequences when compared to existing assembly references.


Subject(s)
Chickens/genetics , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA , Animals , Computational Biology , DNA, Complementary , Female , Genomics , High-Throughput Nucleotide Sequencing/economics , Quality Control , Reproducibility of Results , Software , Transcriptome
15.
JAMA ; 305(15): 1568-76, 2011 Apr 20.
Article in English | MEDLINE | ID: mdl-21505135

ABSTRACT

CONTEXT: The identification of patients with inherited cancer susceptibility syndromes facilitates early diagnosis, prevention, and treatment. However, in many cases of suspected cancer susceptibility, the family history is unclear and genetic testing of common cancer susceptibility genes is unrevealing. OBJECTIVE: To apply whole-genome sequencing to a patient without any significant family history of cancer but with suspected increased cancer susceptibility because of multiple primary tumors to identify rare or novel germline variants in cancer susceptibility genes. DESIGN, SETTING, AND PARTICIPANT: Skin (normal) and bone marrow (leukemia) DNA were obtained from a patient with early-onset breast and ovarian cancer (negative for BRCA1 and BRCA2 mutations) and therapy-related acute myeloid leukemia (t-AML) and analyzed with the following: whole-genome sequencing using paired-end reads, single-nucleotide polymorphism (SNP) genotyping, RNA expression profiling, and spectral karyotyping. MAIN OUTCOME MEASURES: Structural variants, copy number alterations, single-nucleotide variants, and small insertions and deletions (indels) were detected and validated using the described platforms. RESULTS; Whole-genome sequencing revealed a novel, heterozygous 3-kilobase deletion removing exons 7-9 of TP53 in the patient's normal skin DNA, which was homozygous in the leukemia DNA as a result of uniparental disomy. In addition, a total of 28 validated somatic single-nucleotide variations or indels in coding genes, 8 somatic structural variants, and 12 somatic copy number alterations were detected in the patient's leukemia genome. CONCLUSION: Whole-genome sequencing can identify novel, cryptic variants in cancer susceptibility genes in addition to providing unbiased information on the spectrum of mutations in a cancer genome.


Subject(s)
Genes, p53/genetics , Genetic Predisposition to Disease , Leukemia, Myeloid, Acute/genetics , Sequence Analysis, DNA , Sequence Deletion , Adult , Age of Onset , Breast Neoplasms/therapy , Cystadenocarcinoma, Serous/therapy , DNA, Neoplasm/genetics , Female , Genome, Human/genetics , Humans , Leukemia, Myeloid, Acute/etiology , Ovarian Neoplasms/therapy , Polymorphism, Single Nucleotide , Tumor Suppressor Protein p53/genetics
16.
N Engl J Med ; 363(25): 2424-33, 2010 Dec 16.
Article in English | MEDLINE | ID: mdl-21067377

ABSTRACT

BACKGROUND: The genetic alterations responsible for an adverse outcome in most patients with acute myeloid leukemia (AML) are unknown. METHODS: Using massively parallel DNA sequencing, we identified a somatic mutation in DNMT3A, encoding a DNA methyltransferase, in the genome of cells from a patient with AML with a normal karyotype. We sequenced the exons of DNMT3A in 280 additional patients with de novo AML to define recurring mutations. RESULTS: A total of 62 of 281 patients (22.1%) had mutations in DNMT3A that were predicted to affect translation. We identified 18 different missense mutations, the most common of which was predicted to affect amino acid R882 (in 37 patients). We also identified six frameshift, six nonsense, and three splice-site mutations and a 1.5-Mbp deletion encompassing DNMT3A. These mutations were highly enriched in the group of patients with an intermediate-risk cytogenetic profile (56 of 166 patients, or 33.7%) but were absent in all 79 patients with a favorable-risk cytogenetic profile (P<0.001 for both comparisons). The median overall survival among patients with DNMT3A mutations was significantly shorter than that among patients without such mutations (12.3 months vs. 41.1 months, P<0.001). DNMT3A mutations were associated with adverse outcomes among patients with an intermediate-risk cytogenetic profile or FLT3 mutations, regardless of age, and were independently associated with a poor outcome in Cox proportional-hazards analysis. CONCLUSIONS: DNMT3A mutations are highly recurrent in patients with de novo AML with an intermediate-risk cytogenetic profile and are independently associated with a poor outcome. (Funded by the National Institutes of Health and others.).


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , Leukemia, Myeloid, Acute/genetics , Mutation , Adult , DNA Methylation , DNA Methyltransferase 3A , DNA Mutational Analysis/methods , Female , Frameshift Mutation , Gene Expression , Humans , Karyotyping , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged , Nucleic Acid Amplification Techniques , Prognosis , Proportional Hazards Models , Survival Analysis
17.
Nature ; 464(7291): 999-1005, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20393555

ABSTRACT

Massively parallel DNA sequencing technologies provide an unprecedented ability to screen entire genomes for genetic changes associated with tumour progression. Here we describe the genomic analyses of four DNA samples from an African-American patient with basal-like breast cancer: peripheral blood, the primary tumour, a brain metastasis and a xenograft derived from the primary tumour. The metastasis contained two de novo mutations and a large deletion not present in the primary tumour, and was significantly enriched for 20 shared mutations. The xenograft retained all primary tumour mutations and displayed a mutation enrichment pattern that resembled the metastasis. Two overlapping large deletions, encompassing CTNNA1, were present in all three tumour samples. The differential mutation frequencies and structural variation patterns in metastasis and xenograft compared with the primary tumour indicate that secondary tumours may arise from a minority of cells within the primary tumour.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/secondary , Breast Neoplasms/genetics , Genome, Human/genetics , Mutation/genetics , Neoplasm Transplantation , Adult , Breast Neoplasms/pathology , DNA Copy Number Variations/genetics , DNA Mutational Analysis , Disease Progression , Female , Gene Frequency/genetics , Genomics , Humans , Translocation, Genetic/genetics , Transplantation, Heterologous , alpha Catenin/genetics
18.
N Engl J Med ; 361(11): 1058-66, 2009 Sep 10.
Article in English | MEDLINE | ID: mdl-19657110

ABSTRACT

BACKGROUND: The full complement of DNA mutations that are responsible for the pathogenesis of acute myeloid leukemia (AML) is not yet known. METHODS: We used massively parallel DNA sequencing to obtain a very high level of coverage (approximately 98%) of a primary, cytogenetically normal, de novo genome for AML with minimal maturation (AML-M1) and a matched normal skin genome. RESULTS: We identified 12 acquired (somatic) mutations within the coding sequences of genes and 52 somatic point mutations in conserved or regulatory portions of the genome. All mutations appeared to be heterozygous and present in nearly all cells in the tumor sample. Four of the 64 mutations occurred in at least 1 additional AML sample in 188 samples that were tested. Mutations in NRAS and NPM1 had been identified previously in patients with AML, but two other mutations had not been identified. One of these mutations, in the IDH1 gene, was present in 15 of 187 additional AML genomes tested and was strongly associated with normal cytogenetic status; it was present in 13 of 80 cytogenetically normal samples (16%). The other was a nongenic mutation in a genomic region with regulatory potential and conservation in higher mammals; we detected it in one additional AML tumor. The AML genome that we sequenced contains approximately 750 point mutations, of which only a small fraction are likely to be relevant to pathogenesis. CONCLUSIONS: By comparing the sequences of tumor and skin genomes of a patient with AML-M1, we have identified recurring mutations that may be relevant for pathogenesis.


Subject(s)
Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/genetics , Mutation , Adult , DNA Mutational Analysis , Female , Gene Frequency , Genome, Human , Humans , Male , Middle Aged , Nucleophosmin , Point Mutation , Sequence Analysis, DNA/methods
19.
Nature ; 456(7218): 66-72, 2008 Nov 06.
Article in English | MEDLINE | ID: mdl-18987736

ABSTRACT

Acute myeloid leukaemia is a highly malignant haematopoietic tumour that affects about 13,000 adults in the United States each year. The treatment of this disease has changed little in the past two decades, because most of the genetic events that initiate the disease remain undiscovered. Whole-genome sequencing is now possible at a reasonable cost and timeframe to use this approach for the unbiased discovery of tumour-specific somatic mutations that alter the protein-coding genes. Here we present the results obtained from sequencing a typical acute myeloid leukaemia genome, and its matched normal counterpart obtained from the same patient's skin. We discovered ten genes with acquired mutations; two were previously described mutations that are thought to contribute to tumour progression, and eight were new mutations present in virtually all tumour cells at presentation and relapse, the function of which is not yet known. Our study establishes whole-genome sequencing as an unbiased method for discovering cancer-initiating mutations in previously unidentified genes that may respond to targeted therapies.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Genome, Human/genetics , Leukemia, Myeloid, Acute/genetics , Case-Control Studies , Disease Progression , Gene Expression Profiling , Genomics , Humans , Mutagenesis, Insertional , Mutation , Polymorphism, Single Nucleotide , Recurrence , Sequence Analysis, DNA , Sequence Deletion , Skin/metabolism
20.
Nature ; 455(7216): 1069-75, 2008 Oct 23.
Article in English | MEDLINE | ID: mdl-18948947

ABSTRACT

Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers--including NF1, APC, RB1 and ATM--and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment.


Subject(s)
Adenocarcinoma, Bronchiolo-Alveolar/genetics , Lung Neoplasms/genetics , Mutation/genetics , Female , Gene Dosage , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Humans , Male , Proto-Oncogenes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...