Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Exp Hematol ; 39(11): 1072-80, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21864488

ABSTRACT

Microvesicles have been shown to mediate varieties of intercellular communication. Work in murine species has shown that lung-derived microvesicles can deliver mRNA, transcription factors, and microRNA to marrow cells and alter their phenotype. The present studies evaluated the capacity of excised human lung cancer cells to change the genetic phenotype of human marrow cells. We present the first studies on microvesicle production by excised cancers from human lung and the capacity of these microvesicles to alter the genetic phenotype of normal human marrow cells. We studied 12 cancers involving the lung and assessed nine lung-specific mRNA species (aquaporin, surfactant families, and clara cell-specific protein) in marrow cells exposed to tissue in co-culture, cultured in conditioned media, or exposed to isolated lung cancer-derived microvesicles. We assessed two or seven days of co-culture and marrow which was unseparated, separated by ficoll density gradient centrifugation or ammonium chloride lysis. Under these varying conditions, each cancer derived from lung mediated marrow expression of between one and seven lung-specific genes. Microvesicles were identified in the pellet of ultracentrifuged conditioned media and shown to enter marrow cells and induce lung-specific mRNA expression in marrow. A lung melanoma and a sarcoma also induced lung-specific mRNA in marrow cells. These data indicate that lung cancer cells may alter the genetic phenotype of normal cells and suggest that such perturbations might play a role in tumor progression, tumor recurrence, or metastases. They also suggest that the tissue environment may alter cancer cell gene expression.


Subject(s)
Bone Marrow Cells/metabolism , Cell Communication/genetics , Lung Neoplasms/genetics , Lung/metabolism , Bone Marrow Cells/chemistry , Bone Marrow Cells/cytology , Coculture Techniques , Gene Expression Regulation, Neoplastic , Humans , Lung/chemistry , Lung/pathology , Lung Neoplasms/pathology , Phenotype , Proteins/genetics , RNA, Messenger/analysis
2.
Stem Cells Dev ; 19(4): 453-60, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19788373

ABSTRACT

Primitive marrow lineage-negative rhodamine low and Hoechst low (LRH) stem cells isolated on the basis of quiescence respond to the cytokines thrombopoietin, FLT3L, and steel factor by synchronously progressing through cell cycle. We have now profiled the mRNA expression, as determined by real-time RT-PCR, of 47 hematopoietic or cell cycle-related genes, focusing on the variations in the cell cycle regulators with cycle transit. LRH stem cells, at isolation, showed expression of all interrogated genes, but at relatively low levels. In our studies, there was a good deal of consistency with regard to cell cycle regulatory genes involved in the G1/S progression point of LRH murine stem cells. The observed pattern of expression of cyclin A2 is consistent with actions at these phases of cell cycle. Minimal elevations were seen at 16 h with higher elevations at 24, 32, 40, and 48 h times encompassing S, G2, and M phases. CDK2 expression pattern was also consistent with a role in G1/S transition with a modest elevation at 24 h and more substantial elevation at 32 h. The observed pattern of expression of cyclin F mRNA with marked elevations at 16-40 h was also consistent with actions in S and G2 phases. Cyclin D1 expression pattern was less consistent with its known role in G1 progression. The alterations in multiple other cell cycle regulators were consistent with previous information obtained in other cell systems. The cycle regulatory mechanics appears to be preserved across broad ranges of cell types.


Subject(s)
Cell Lineage , Hematopoiesis , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Adjuvants, Immunologic/pharmacology , Animals , Cell Cycle/drug effects , Cell Cycle/genetics , Cells, Cultured , Cyclin-Dependent Kinase 2/genetics , Cyclins/genetics , Gene Expression , Hematopoiesis/drug effects , Hematopoiesis/genetics , Hematopoietic Stem Cells/drug effects , Male , Membrane Proteins/pharmacology , Mice , Rhodamines , Stem Cell Factor/pharmacology , Thrombopoietin/pharmacology
3.
Exp Hematol ; 37(7): 775-83, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19447161

ABSTRACT

Long-term engrafting marrow hematopoietic stem cells have been considered to be a quiescent stem cell in G(0). However, there are contradictory reports on this point in the literature, showing marked variability of results over time and between mice. Furthermore, there are circadian rhythms for stem cells and progenitors. In general, most studies have not taken stochastic variability or circadian rhythms into account. In addition, stem cell purification has represented the present gold standard in stem cell research. However, evidence exists that the stem cell separations leave behind most stem cells and are not random. Thus, purified stem cells may not be representative of the stem cells in the unseparated marrow cell population. The epitope-based purification of stem cells may have misled the stem cell field. Lastly, there are interesting published studies indicating that the irradiated marrow microenvironment might be toxic to marrow stem cells, limiting self-renewal capacity, and that quantitative engraftment occurs in nonablated mice. These considerations suggest that in carrying out stem cell studies, attention needs to be directed to the appropriate number of repeat experiments, to circadian rhythms, to possible purification skewing of results, and to the most appropriate transplant assay model.


Subject(s)
Bone Marrow Cells/cytology , Hematopoietic Stem Cells/cytology , Animals , Cell Cycle , Circadian Rhythm , Mice
4.
Stem Cells Dev ; 17(2): 207-19, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18447637

ABSTRACT

Green fluorescent protein (GFP)-labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung-specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit the cell cycle by exposure to interleukin-3 (IL-3), IL-6, IL-11, and Steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G(1)/S interface of the cell cycle have a three-fold increase in cells that assume a nonhematopoietic or pulmonary epithelial cell phenotype and that this increase is no longer seen in late S/G(2). These cells have been characterized as GFP(+) CD45(-) and GFP(+) cytokeratin(+). Thus, marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine-induced cell cycle transit. Previous studies have shown that the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse the cell cycle, leading to a continuum model of stem cell regulation. The present study indicates that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.


Subject(s)
Bone Marrow Cells/drug effects , Cell Transdifferentiation/drug effects , Cytokines/pharmacology , Lung/physiology , Animals , Antigens, Ly/metabolism , Bone Marrow Cells/metabolism , Bone Marrow Cells/physiology , Bone Marrow Transplantation/physiology , Cell Cycle/drug effects , Cell Fusion , Cell Movement , Cells, Cultured , Female , Fluorescence , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Leukocyte Common Antigens/metabolism , Lung/cytology , Lung/drug effects , Lung/metabolism , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL
5.
J Cell Physiol ; 214(3): 786-95, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17894410

ABSTRACT

Evolving data suggest that marrow hematopoietic stem cells show reversible changes in homing, engraftment, and differentiation phenotype with cell cycle progression. Furthermore, marrow stem cells are a cycling population. Traditional concepts hold that the system is hierarchical, but the information on the lability of phenotype with cycle progression suggests a model in which stem cells are on a reversible continuum. Here we have investigated mRNA expression in murine lineage negative stem cell antigen-1 positive stem cells of a variety of cell surface epitopes and transcription regulators associated with stem cell identity or regulation. At isolation these stem cells expressed almost all cell surface markers, and transcription factors studied, including receptors for G-CSF, GM-CSF, and IL-7. When these stem cells were induced to transit cell cycle in vitro by exposure to interleukin-3 (IL-3), Il-6, IL-11, and steel factor some (CD34, CD45R c-kit, Gata-1, Gata-2, Ikaros, and Fog) showed stable expression over time, despite previously documented alterations in phenotype, while others showed variation of expression between and within experiments. These latter included Sca-1, Mac-1, c-fms, and c-mpl. Tal-1, endoglin, and CD4. These studies indicate that defined marrow stem cells express a wide variety of genes at isolation and with cytokine induced cell cycle transit show marked and reversible phenotype lability. Altogether, the phenotypic plasticity of gene expression for murine stem cells indicates a continuum model of stem cell regulation and extends the model to reversible expression with cell cycle transit of mRNA for cytokine receptors and stem cell markers.


Subject(s)
Cell Cycle , Gene Expression Regulation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Animals , Cell Separation , Gene Expression Profiling , Male , Mice , Mice, Inbred C57BL , Models, Biological , RNA, Messenger/genetics , RNA, Messenger/metabolism
6.
Stem Cells ; 25(9): 2245-56, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17556595

ABSTRACT

Numerous animal studies have demonstrated that adult marrow-derived cells can contribute to the cellular component of the lung. Lung injury is a major variable in this process; however, the mechanism remains unknown. We hypothesize that injured lung is capable of inducing epigenetic modifications of marrow cells, influencing them to assume phenotypic characteristics of lung cells. We report that under certain conditions, radiation-injured lung induced expression of pulmonary epithelial cell-specific genes and prosurfactant B protein in cocultured whole bone marrow cells separated by a cell-impermeable membrane. Lung-conditioned media had a similar effect on cocultured whole bone marrow cells and was found to contain pulmonary epithelial cell-specific RNA-filled microvesicles that entered whole bone marrow cells in culture. Also, whole bone marrow cells cocultured with lung had a greater propensity to produce type II pneumocytes after transplantation into irradiated mice. These findings demonstrate alterations of marrow cell phenotype by lung-derived microvesicles and suggest a novel mechanism for marrow cell-directed repair of injured tissue.


Subject(s)
Bone Marrow Cells/metabolism , Bone Marrow Transplantation , Gene Expression Regulation , Lung/cytology , Phenotype , Protein Biosynthesis , Spheroids, Cellular/physiology , Animals , Cell Differentiation , Cells, Cultured , Culture Media, Conditioned/pharmacology , Female , Lung/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Biological , RNA, Messenger/metabolism
7.
Exp Hematol ; 35(1): 96-107, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17198878

ABSTRACT

OBJECTIVE: The purpose of this study was to evaluate the technique of stem cell-directed differentiation in the context of cell-cycle position. The hypothesis was that stem cells would have different sensitivities to an identical inductive signal through cell-cycle transit and that this would affect the outcome of its progeny. MATERIALS AND METHODS: Differentiation of murine marrow lineage(negative)rhodamine-123(low-)Hoechst-33342(low) (LRH) stem cells was determined at different points in cell cycle under stimulation by thrombopoietin, flt3 ligand, and steel factor. LRH stem cells were subcultured in granulocyte macrophage colony-stimulating factor, granulocyte colony-stimulating factor, and steel factor at different points in cell cycle and differentiation determined 14 days later. RESULTS: There was a significant, reproducible, and pronounced reversible increase in differentiation to megakaryocytes in early S-phase and to nonproliferative granulocytes in mid S-phase. Megakaryocyte hotspots also were seen on a clonal basis. Elevations of the transcription factor FOG-1 were seen at the hotspot along with increases in Nfe2 and Fli1. CONCLUSIONS: We show that the potential of marrow stem cells to differentiate changes reversibly with cytokine-induced cell-cycle transit, suggesting that stem cell regulation is not based on the classic hierarchical model, but instead on a functional continuum. We propose that there is a tight linkage of commitment to a lineage and a particular phase of cell cycle. Thus, windows of vulnerability for commitment can open and close depending on the phase of cell cycle. These data indicate that stem cell differentiation occurs on a cell-cycle-related continuum with fluctuating windows of transcriptional opportunity.


Subject(s)
Cell Differentiation , Stem Cells/cytology , Animals , Bone Marrow Cells/cytology , Cell Culture Techniques , Cell Cycle , Cell Lineage , Intercellular Signaling Peptides and Proteins/pharmacology , Interphase , Male , Megakaryocytes/cytology , Mice , Mice, Inbred Strains , Pluripotent Stem Cells/cytology , S Phase , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL