Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 98(15): 8903-8, 2001 Jul 17.
Article in English | MEDLINE | ID: mdl-11438686

ABSTRACT

The bronze (bz) locus exhibits the highest rate of recombination of any gene in higher plants. To investigate the possible basis of this high rate of recombination, we have analyzed the physical organization of the region around the bz locus. Two adjacent bacterial artificial chromosome clones, comprising a 240-kb contig centered around the Bz-McC allele, were isolated, and 60 kb of contiguous DNA spanning the two bacterial artificial chromosome clones was sequenced. We find that the bz locus lies in an unusually gene-rich region of the maize genome. Ten genes, at least eight of which are shown to be transcribed, are contained in a 32-kb stretch of DNA that is uninterrupted by retrotransposons. We have isolated nearly full length cDNAs corresponding to the five proximal genes in the cluster. The average intertranscript distance between them is just 1 kb, revealing a surprisingly compact packaging of adjacent genes in this part of the genome. At least 11 small insertions, including several previously described miniature inverted repeat transposable elements, were detected in the introns and 3' untranslated regions of genes and between genes. The gene-rich region is flanked at the proximal and distal ends by retrotransposon blocks. Thus, the maize genome appears to have scattered regions of high gene density similar to those found in other plants. The unusually high rate of intragenic recombination seen in bz may be related to the very high gene density of the region.


Subject(s)
Genome, Plant , Plant Proteins/genetics , Recombination, Genetic , Zea mays/genetics , Base Sequence , DNA, Plant , Genes, Plant , Molecular Sequence Data , Multigene Family , Mutagenesis, Insertional , Retroelements
2.
Proc Natl Acad Sci U S A ; 97(26): 14807-12, 2000 Dec 19.
Article in English | MEDLINE | ID: mdl-11106370

ABSTRACT

Plants can defend themselves from herbivorous insects by emitting volatile chemical signals that attract natural enemies of the herbivore. For example, maize seedlings attacked by beet armyworm larvae (Spodoptera exigua) produce a mixture of terpenoid and indole volatiles that serve to attract parasitic wasps. A key step in terpenoid biosynthesis is the conversion of acyclic prenyl diphosphates to terpenoid compounds by specific terpenoid synthases (cyclases). We have cloned a maize sesquiterpene cyclase gene, stc1, by transposon tagging and have identified two deletion mutations of the gene. The stc1 gene is located on chromosome 9S and does not seem to have a closely related ortholog in the maize genome. It is induced 15- to 30-fold in maize leaves by beet armyworm larvae feeding or by application of purified volicitin, the insect-derived elicitor, at a mechanically wounded site. stc1 induction is systemic, because undamaged leaves of the same plant show a similar increase in stc1 transcription. Analysis of volatiles from volicitin-treated seedlings revealed that a major naphthalene-based sesquiterpene was present in wild-type seedlings but absent in the Ac-insertion and x-ray-deletion mutants. Therefore, we have identified a maize gene that responds to caterpillar herbivory by producing a chemical defense signal that most likely serves to attract natural enemies of the herbivore.


Subject(s)
Alleles , Carbon-Carbon Lyases/genetics , Fatty Acids/metabolism , Genes, Plant , Zea mays/enzymology , Amino Acid Sequence , Animals , Base Sequence , DNA, Plant , Enzyme Induction , Feeding Behavior , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Molecular Sequence Data , Mutation , Naphthalenes/metabolism , Plant Leaves/metabolism , Sequence Homology, Amino Acid , Sesquiterpenes/metabolism , Spodoptera/metabolism , Spodoptera/physiology , Zea mays/genetics
3.
Genome Res ; 10(6): 866-73, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10854418

ABSTRACT

A generic bacterial artificial chromosome (BAC) library from a complex plant genome like maize may not be suitable for some types of genomic analysis, for example, for establishing correlations between the genetic and the physical organization of a given chromosome region. Previously, we carried out extensive genetic analysis of the bronze (Bz) region in Zea mays using a W22 inbred line carrying the Bz-McC allele; however, BAC libraries of that line are neither available nor under construction. Here, we report the isolation of large, adjacent BAC clones of this region from a partial BAC library of W22. We developed a BAC vector suitable for cloning NotI fragments and used it to clone size-fractionated genomic DNA that had been cut to completion with the methylation-sensitive, rare-cutting enzyme NotI. This strategy resulted in a very significant enrichment of large genic DNA. From a library of about 20,000 BACs, containing just two-thirds of a maize genome, we isolated 16 BAC clones of the 110-kb distal Bz fragment and 10 BAC clones of the 130-kb proximal Bz fragment. This recovery means that our strategy resulted in a 15- to 24-fold enrichment of specific sequences. The order of the BAC clones in the 240-kb contig, predetermined from an internal NotI site in the Bz-McC allele was confirmed by hybridization with sequences from sites previously mapped proximal and distal to Bz and by sequencing. To show the general utility of our approach and the value of our partial BAC library, we also isolated BAC clones of other sequences, such as tub4 and the complex R-r allele, contained in the same size fraction of DNA. This is the first report of the use of a BAC vector to clone allele-specific large DNA fragments from a plant with a large genome, circumventing the need to construct a complete BAC library.


Subject(s)
Alleles , Chromosomes, Bacterial/genetics , Cloning, Molecular/methods , DNA, Plant/isolation & purification , Gene Library , Zea mays/genetics , Contig Mapping/methods , DNA Fragmentation/genetics , DNA, Plant/chemistry , Deoxyribonucleases, Type II Site-Specific/genetics , Genes, Plant/genetics , Genetic Vectors/chemistry , Genetic Vectors/genetics
4.
Plant Cell ; 12(5): 677-90, 2000 May.
Article in English | MEDLINE | ID: mdl-10810143

ABSTRACT

Inoculation of turnip crinkle virus (TCV) on the resistant Arabidopsis ecotype Dijon (Di-17) results in the development of a hypersensitive response (HR) on the inoculated leaves. To assess the role of the recently cloned HRT gene in conferring resistance, we monitored both HR and resistance (lack of viral spread to systemic tissues) in the progeny of a cross between resistant Di-17 and susceptible Columbia plants. As expected, HR development segregated as a dominant trait that corresponded with the presence of HRT. However, all of the F(1) plants and three-fourths of HR(+) F(2) plants were susceptible to the virus. These results suggest the presence of a second gene, termed RRT, that regulates resistance to TCV. The allele present in Di-17 appears to be recessive to the allele or alleles present in TCV-susceptible ecotypes. We also demonstrate that HR formation and TCV resistance are dependent on salicylic acid but not on ethylene or jasmonic acid. Furthermore, these phenomena are unaffected by mutations in NPR1. Thus, TCV resistance requires a yet undefined salicylic acid-dependent, NPR1-independent signaling pathway.


Subject(s)
Arabidopsis/virology , Carmovirus/pathogenicity , Genes, Plant , Protein Kinases , Saccharomyces cerevisiae Proteins , Salicylic Acid/metabolism , Arabidopsis/genetics , Base Sequence , Cyclopentanes/metabolism , DNA Primers , Ethylenes/metabolism , Fungal Proteins/metabolism , Oxylipins , Signal Transduction
5.
Genetics ; 152(4): 1733-40, 1999 Aug.
Article in English | MEDLINE | ID: mdl-10430597

ABSTRACT

Although it has been known for some time that the maize transposon Ac can mutate to Ds by undergoing internal deletions, the mechanism by which these mutations arise has remained conjectural. To gain further insight into this mechanism in maize we have studied a series of Ds elements that originated de novo from Ac elements at known locations in the genome. We present evidence that new, internally deleted Ds elements can arise at the Ac donor site when Ac transposes to another site in the genome. However, internal deletions are rare relative to Ac excision footprints, the predominant products of Ac transposition. We have characterized the deletion junctions in five new Ds elements. Short direct repeats of variable length occur adjacent to the deletion junction in three of the five Ds derivatives. In the remaining two, extra sequences or filler DNA is inserted at the junction. The filler DNAs are identical to sequences found close to the junction in the Ac DNA, where they are flanked by the same sequences that flank the filler DNA in the deletion. These findings are explained most simply by a mechanism involving error-prone DNA replication as an occasional alternative to end-joining in the repair of Ac-generated double-strand breaks.


Subject(s)
DNA Transposable Elements/genetics , Zea mays/genetics , DNA Repair , DNA Replication , DNA, Plant/genetics , Evolution, Molecular , Sequence Deletion
6.
Mol Plant Microbe Interact ; 12(12): 1053-63, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10624014

ABSTRACT

In many plant-pathogen interactions, resistance is associated with the synthesis and accumulation of salicylic acid (SA) and pathogenesis-related (PR) proteins. At least two general classes of mutants with altered resistance to pathogen attack have been identified in Arabidopsis. One class exhibits increased susceptibility to pathogen infection; the other class exhibits enhanced resistance to pathogens. In an attempt to identify mutations in resistance-associated loci, we screened a population of T-DNA tagged Arabidopsis thaliana ecotype Wassilewskija (Ws) for mutants showing constitutive expression of the PR-1 gene (cep). A mutant was isolated and shown to constitutively express PR-1, PR-2, and PR-5 genes. This constitutive phenotype segregated as a single recessive trait in the Ws genetic background. The mutant also had elevated levels of SA, which are responsible for the cep phenotype. The cep mutant spontaneously formed hypersensitive response (HR)-like lesions on the leaves and cotyledons and also exhibited enhanced resistance to virulent bacterial and fungal pathogens. Genetic analyses of segregating progeny from outcrosses to other ecotypes unexpectedly revealed that alterations in more than one gene condition the constitutive expression of PR genes in the original mutant. One of the mutations, designated cpr20, maps to the lower arm of chromosome 4 and is required for the cep phenotype. Another mutation, which has been termed cpr21, maps to chromosome 1 and is often, but not always, associated with this phenotype. The recessive nature of the cep trait suggests that the CPR20 and CPR21 proteins may act as negative regulators in the disease resistance signal transduction pathway.


Subject(s)
Arabidopsis/genetics , Mutation , Plant Diseases/genetics , Arabidopsis/microbiology , Crosses, Genetic , Phenotype , Plant Proteins/genetics
7.
Genetics ; 147(4): 1923-32, 1997 Dec.
Article in English | MEDLINE | ID: mdl-9409847

ABSTRACT

Double-strand breaks have been implicated both in the initiation of meiotic recombination in yeast and as intermediates in the transposition process of nonreplicative transposons. Some transposons of this class, notably P of Drosophila and Tc1 of Caenorhabditis elegans, promote a form of homology-dependent premeiotic gene conversion upon excision. In this work, we have looked for evidence of an interaction between Ac transposition and meiotic recombination at the bz locus in maize. We find that the frequency of meiotic recombination between homologues is not enhanced by the presence of Ac in one of the bz heteroalleles and, conversely, that the presence of a homologous sequence in either trans (homologous chromosome) or cis (tandem duplication) does not promote conversion of the Ac insertion site. However, a tandem duplication of the bz locus may be destabilized by the insertion of Ac. We discuss possible reasons for the lack of interaction between Ac excision and homologous meiotic recombination in maize.


Subject(s)
DNA Repair , DNA Transposable Elements , DNA, Plant , Meiosis/genetics , Recombination, Genetic , Zea mays/genetics , Alleles , Genes, Plant , Heterozygote , Multigene Family , Mutagenesis , Repetitive Sequences, Nucleic Acid , Sequence Analysis, DNA
8.
Plant Cell ; 9(9): 1633-46, 1997 Sep.
Article in English | MEDLINE | ID: mdl-9338965

ABSTRACT

The bronze (bz) gene is a recombinational hotspot in the maize genome: its level of meiotic recombination per unit of physical length is > 100-fold higher than the genome's average and is the highest of any plant gene analyzed to date. Here, we examine whether recombination is also unevenly distributed within the bz gene. In yeast genes, recombination (conversion) is polarized, being higher at the end of the gene where recombination is presumably initiated. We have analyzed products of meiotic recombination between heteroallelic pairs of bz mutations in both the presence and absence of heterologies and have sequenced the recombination junction in 130 such Bz intragenic recombinants. We have found that in the absence of heterologies, recombination is proportional to physical distance across the bz gene. The simplest interpretation for this lack of polarity is that recombination is initiated randomly within the gene. Insertion mutations affect the frequency and distribution of intragenic recombination events at bz, creating hotspots and coldspots. Single base pair heterologies also affect recombination, with fewer recombination events than expected by chance occurring in regions of the bz gene with a high density of heterologies. We also provide evidence that meiotic recombination in maize is conservative, that is, it does not introduce changes, and that meiotic conversion tracts are continuous and similar in size to those in yeast.


Subject(s)
Genome, Plant , Meiosis/genetics , Recombination, Genetic , Zea mays/genetics , Alleles , Mutation
9.
Mol Gen Genet ; 255(6): 580-6, 1997 Aug.
Article in English | MEDLINE | ID: mdl-9323361

ABSTRACT

The bz-m1 mutation in maize was one of the first to arise by direct transposition of the chromosome-breaking Ds element from its original or 'standard' location in chromosome 9S to a known locus in the same chromosome arm. Thus, elucidation of its structure should shed light on the nature of the original Ds element described by McClintock in 1948. The Ds insertion in bz-m1 has been reported to be only 1.2 kb long-much shorter than other chromosome-breaking Ds elements that have been described. We have characterized here the Ds element in our bz-m1 stocks and have confirmed by genetic and molecular tests that, in the presence of Ac, it acts as a chromosome breaker. The Ds insertion at bz-m1 is 1260 bp long. Besides its normal 5' and 3' ends, it contains an internal 3' end at the same junction as the chromosome-breaking double Ds element that has been found in several sh mutations. Thus, it appears to have arisen from the 4.1-kb double Ds by internal deletion of 2.9 kb. Because the element has lost one internal 5' end, but retains the chromosome-breaking properties of double Ds, we have named it sesqui-Ds (sDs). The origin, structure and properties of sDs vis-à-vis double Ds support the hypothesis that double Ds corresponds to the chromosome-breaking Ds element at the 'standard' location in 9S.


Subject(s)
Genes, Plant , Mutation , Zea mays/genetics , Amino Acid Sequence , Base Sequence , Chromosomes/genetics , DNA Primers/genetics , DNA Transposable Elements , DNA, Plant/genetics , Genetic Linkage , Molecular Sequence Data , Mutagenesis, Insertional , Polymerase Chain Reaction
10.
Plant Cell ; 7(3): 309-19, 1995 Mar.
Article in English | MEDLINE | ID: mdl-7734965

ABSTRACT

The FATTY ACID ELONGATION1 (FAE1) gene of Arabidopsis is required for the synthesis of very long chain fatty acids in the seed. The product of the FAE1 gene is presumed to be a condensing enzyme that extends the chain length of fatty acids from C18 to C20 and C22. We report here the cloning of FAE1 by directed transposon tagging with the maize element Activator (Ac). An unstable fae1 mutant was isolated in a line carrying Ac linked to the FAE1 locus on chromosome 4. Cosegregation and reversion analyses established that the new mutant was tagged by Ac. A DNA fragment flanking Ac was cloned by inverse polymerase chain reaction and used to isolate FAE1 genomic clones and a cDNA clone from a library made from immature siliques. The predicted amino acid sequence of the FAE1 protein shares homology with those of other condensing enzymes (chalcone synthase, stilbene synthases, and beta-ketoacyl-acyl carrier protein synthase III), supporting the notion that FAE1 is the structural gene for a synthase or condensing enzyme. FAE1 is expressed in developing seed, but not in leaves, as expected from the effect of the fae1 mutation on the fatty acid compositions of those tissues.


Subject(s)
Acetyltransferases/biosynthesis , Acetyltransferases/genetics , Arabidopsis/genetics , DNA Transposable Elements , Fatty Acids/biosynthesis , Genes, Plant , Sequence Tagged Sites , Zea mays/genetics , Acetyltransferases/chemistry , Amino Acid Sequence , Arabidopsis/metabolism , Base Sequence , Chromosome Mapping , Fatty Acid Elongases , Molecular Sequence Data , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Zea mays/metabolism
11.
Plant Physiol ; 106(1): 143-150, 1994 Sep.
Article in English | MEDLINE | ID: mdl-12232312

ABSTRACT

The overall fatty acid composition of leaf lipids in a mutant of Arabidopsis thaliana was characterized by an increased level of 16:0 and a concomitant decrease of 18-carbon fatty acids as a consequence of a single recessive nuclear mutation at the fab1 locus. Quantitative analysis of the fatty acid composition of individual lipids established that lipids synthesized by both the prokaryotic and eukaryotic pathways were affected by the mutation. Direct enzyme assays demonstrated that the mutant plants were deficient in the activity of 3-ketoacyl-acyl carrier protein synthase II; therefore, it is inferred that fab1 may encode this enzyme. Labeling experiments with [14C]acetate and lipase positional analysis indicated that the mutation results in a small shift in the partitioning of lipid synthesis between the prokaryotic and eukaryotic pathways. Synthesis of chloroplast lipids by the prokaryotic pathway was increased with a corresponding reduction in the eukaryotic pathway.

12.
Genetics ; 136(1): 261-79, 1994 Jan.
Article in English | MEDLINE | ID: mdl-8138163

ABSTRACT

We have shown before that the Ac element from the maize bz-m2(Ac) allele, located in the short arm of chromosome 9 (9S), transposes preferentially to sites that are linked to the bz donor locus. Yet, about half of the Ac transpositions recovered from bz-m2(Ac) are in receptor sites not linked to the donor locus. In this study, we have analyzed the distribution of those unlinked receptor sites. Thirty-seven transposed Ac (trAc) elements that recombined independently of the bz locus were mapped using a set of wx reciprocal translocations. We found that the distribution of unlinked receptor sites for trAs was not random. Ten trAcs mapped to 9L, i.e., Ac had transposed to sites physically, if not genetically, linked to the donor site. Among chromosomes other than 9, the Ac element of bz-m2(Ac) appeared to have transposed preferentially to certain chromosomes, such as 5 and 7, but infrequently to others, such as 1, the longest chromosome in the maize genome. The seven trAc elements in chromosome 5 were mapped relative to markers in 5S and 5L and localized to both arms of 5. We also investigated the transposition of Ac to the homolog of the donor chromosome. We found that Ac rarely transposes from bz-m2(Ac) to the homologous chromosome 9. The clustering of Ac receptor sites around the donor locus has been taken to mean that a physical association between the donor site and nearby receptor sites occurs during transposition. The preferential occurrence of 9L among chromosomes harboring unlinked receptor sites would be expected according to this model, since sites in 9L would tend to be physically closer to 9S than sites in other chromosomes. The nonrandom pattern seen among the remaining chromosomes could reflect an underlying nuclear architecture, i.e., an ordering of the chromosomes in the interphase nucleus, as suggested from previous cytological observations.


Subject(s)
DNA Transposable Elements , Genes, Plant , Zea mays/genetics , Alleles , Chromosome Mapping , Crosses, Genetic , Genetic Linkage , Models, Genetic , Translocation, Genetic
13.
Plant Cell ; 5(4): 371-378, 1993 Apr.
Article in English | MEDLINE | ID: mdl-12271068

ABSTRACT

We report here the use of the maize transposable element Activator (Ac) to isolate a dicot gene. Ac was introduced into petunia, where it transposed into Ph6, one of several genes that modify anthocyanin pigmentation in flowers by affecting the pH of the corolla. Like other Ac-mutable alleles, the new mutation is unstable and reverts to a functional form in somatic and germinal tissues. The mutant gene was cloned using Ac as a probe, demonstrating the feasibility of heterologous transposon tagging in higher plants. Confirmation that the cloned DNA fragment corresponded to the mutated gene was obtained from an analysis of revertants. In every case examined, reversion to the wild-type phenotype was correlated with restoration of a wild-type-sized DNA fragment. New transposed Acs were detected in many of the revertants. As in maize, the frequency of somatic and germinal excision of Ac from the mutable allele appears to be dependent on genetic background.

14.
Plant Mol Biol ; 21(1): 157-70, 1993 Jan.
Article in English | MEDLINE | ID: mdl-8381038

ABSTRACT

The effect of Ac copy number on the frequency and timing of germinal transposition in tobacco was investigated using the streptomycin phosphotransferase gene (SPT) as an excision marker. The activity of one and two copies of the element was compared by selecting heterozygous and homozygous progeny of transformants carrying single SPT::Ac inserts. It was observed that increasing gene copy not only increases the transposition frequency, but also occasionally alters the timing of transposition such that earlier events are obtained. The result is that some homozygous plants generate multiple streptomycin resistant progeny carrying the same transposed Ac (trAc) element. We have also investigated the effect of modification of the sequence in the region around 82 bp downstream of the polyadenylation site and 177 bp from the 3' end of the element on germinal excision frequencies. Alteration of three bases to create a Bgl II site at this location caused a minor decrease in germinal excision events, but insertion of four bases to create a Cla I site caused a 10-fold decrease in the transposition activity of the Ac element.


Subject(s)
DNA Transposable Elements , Nicotiana/genetics , Phosphotransferases (Alcohol Group Acceptor) , Phosphotransferases/genetics , Plants, Toxic , Zea mays/genetics , Agrobacterium tumefaciens/genetics , Base Sequence , DNA/genetics , DNA/isolation & purification , DNA, Bacterial/genetics , Genetic Vectors , Genotype , Heterozygote , Homozygote , Molecular Sequence Data , Mutagenesis, Site-Directed , Oligodeoxyribonucleotides , Phosphotransferases/metabolism , Plasmids , Recombinant Proteins/metabolism , Restriction Mapping
15.
Theor Appl Genet ; 86(5): 585-8, 1993 Jun.
Article in English | MEDLINE | ID: mdl-24193707

ABSTRACT

We have investigated the pattern of transposition of an intact, 4.6-kbAc element inArabidopsis thaliana. Because the trans-acting transposition function (transposase) ofAc is not fully penetrant in Arabidopsis, it is not possible to use it as a diagnostic feature to scoreAc genetically, as has been done in maize and tobacco. Instead, the presence or absence of a transposedAc (trAc) was monitored by Southern blots. Germinal transpositions from the marker SPT::Ac were selected using a streptomycin germination assay and scored for the presence of atrAc. Segregation of thetrAc element and the SPT donor locus was scored in the F2 progeny of the germinal revertants, and the recombination fraction between thetrAc element and SPT was estimated by the method of maximum likelihood. We have found that, as in maize and tobacco, receptor sites fortrAcs in Arabidopsis tend to be linked to theAc donor locus.

16.
Genetics ; 131(2): 449-59, 1992 Jun.
Article in English | MEDLINE | ID: mdl-1322854

ABSTRACT

We have investigated the germinal and somatic activity of the maize Activator (Ac) element in Arabidopsis with the objective of developing an efficient transposon-based system for gene isolation in that plant. Transposition activity was assayed with a chimeric marker that consists of the cauliflower mosaic virus 35S promoter and a bacterial streptomycin phosphotransferase gene (SPT). Somatic activity was detected in seedlings germinated on plates containing streptomycin as green-resistant sectors against a background of white-sensitive cells. Germinal excisions resulted in fully green seedlings. The transposition frequency was extremely low when a single copy of the transposon was present, but appeared to increase with an increase in Ac copy number. Plants that were selected as variegated produced an increased number of green progeny. The methylation state of the Ac elements in lines with either low or high levels of excision was assessed by restriction analysis. No difference was found between these lines, indicating that the degree of methylation did not contribute to the level of Ac activity. Germinal excision events were analyzed molecularly and shown to carry reinserted transposons in about 50% of the cases. In several instances, streptomycin-resistant siblings carried the same transposed Ac element, indicating that excision had occurred prior to meiosis in the parent. We discuss parameters that need to be considered to optimize the use of Ac as a transposon tag in Arabidopsis.


Subject(s)
DNA Transposable Elements , Plants, Genetically Modified , Plants/genetics , Zea mays/genetics , DNA/analysis , Gene Expression , Genetic Markers , Methylation , Pigmentation/genetics , Recombinant Fusion Proteins/biosynthesis , Transformation, Genetic
17.
Genetics ; 129(3): 855-62, 1991 Nov.
Article in English | MEDLINE | ID: mdl-1661257

ABSTRACT

Chromosome breaks and hence chromosomal rearrangements often occur in maize stocks harboring transposable elements (TEs), yet it is not clear what types of TE structures promote breakage. We have shown previously that chromosomes containing a complex transposon structure consisting of an Ac (Activator) element closely linked in direct orientation to a terminally deleted or fractured Ac (fAc) element have a strong tendency to break during endosperm development. Here we show that pairs of closely linked transposons with intact ends, either two Ac elements--a common product of Ac transposition--or an Ac and a Ds (Dissociation) element, can constitute chromosome-breaking structures, and that the frequency of breakage is inversely related to intertransposon distance. Similar structures may also be implicated in chromosome breaks in other eukaryotic TE systems known to produce chromosomal rearrangements. The present findings are discussed in light of a model of chromosome breakage that is based on the transposition of a partially replicated macrotransposon delimited by the outside ends of the two linked TEs.


Subject(s)
DNA Transposable Elements , Zea mays/genetics , Chromosome Aberrations , Chromosome Mapping , Genes, Plant , Genetic Linkage , Recombination, Genetic
18.
Plant Cell ; 3(5): 473-482, 1991 May.
Article in English | MEDLINE | ID: mdl-12324601

ABSTRACT

The strategy to be followed in a transposon tagging experiment will be determined largely by the transposition pattern of the transposon in question. With a view to utilizing the maize element Activator (Ac) as a transposon tag in heterologous systems, we investigated the pattern of Ac transposition from six different loci in transgenic tobacco. We isolated germinal revertants from plants carrying mutable alleles of the antibiotic-resistant gene streptomycin phosphotransferase (SPT) and mapped the location of the transposed Ac (trAc) elements relative to the donor SPT gene. A comparison of the distributions of trAcs among the six loci revealed that, although the receptor sites for trAcs tend to be linked to the donor locus, the pattern of Ac transposition in tobacco displays surprising locus-to-locus variation. Some trAc distributions showed the same tight clustering around the donor locus previously seen in maize, whereas others were more dispersed. The possible meaning of these findings and their implication for transposon tagging in heterologous systems are discussed.

20.
Theor Appl Genet ; 82(4): 409-12, 1991 Jul.
Article in English | MEDLINE | ID: mdl-24213254

ABSTRACT

The seed fatty acid (FA) composition of various single mutant combinations ofArabidopsis thaliana that affect FA biosynthesis has been examined. Double mutant combinations offae, a mutation affecting CIS elongation, and a series of four other FA biosynthetic mutants were synthesized. The four other single mutants were:fad2 andfad3, which are deficient in 18∶1 and 18∶2 desaturation, respectively;fab1, which is elevated in 16∶0 and decreased in 18∶1; andfab2, which is elevated in 18∶0 and decreased in 18∶1. The superimposition of two blocks in the FA biosynthetic pathway leads to dramatic changes in the FA content of the double mutants. The tenArabidopsis stocks analyzed to date (wild-type, five single mutants, and four double mutants) make seed oils with a wide range of FA compositions, and illustrate the diversity of oils it is possible to obtain from a single plant species.

SELECTION OF CITATIONS
SEARCH DETAIL
...