Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioconjug Chem ; 27(9): 2081-8, 2016 09 21.
Article in English | MEDLINE | ID: mdl-27469406

ABSTRACT

In an effort to examine the utility of antibody-drug conjugates (ADCs) beyond oncology indications, a novel phosphate bridged Cathepsin B sensitive linker was developed to enable the targeted delivery of glucocorticoids. Phosphate bridging of the Cathepsin B sensitive linkers allows for payload attachment at an aliphatic alcohol. As small molecule drug-linkers, these aqueous soluble phosphate containing drug-linkers were found to have robust plasma stability coupled with rapid release of payload in a lysosomal environment. Site-specific ADCs were successfully made between these drug-linkers and an antibody against human CD70, a receptor specifically expressed in immune cells but also found aberrantly expressed in multiple human carcinomas. These ADCs demonstrated in vitro targeted delivery of glucocorticoids to a representative cell line as measured by changes in glucocorticoid receptor (GR) mediated gene mRNA levels. This novel linker expands the scope of potential ADC payloads by allowing an aliphatic alcohol to be a stable, yet cleavable attachment site. This phosphate linker may have broad utility for internalizing ADCs as well as other targeted delivery platforms.


Subject(s)
Cathepsin B/metabolism , Immunoconjugates/chemistry , Immunoconjugates/metabolism , Phosphates/chemistry , Water/chemistry , Alcohols/chemistry , Carbonates/chemistry , Drug Stability , Humans , Lysosomes/metabolism , Solubility
2.
J Am Chem Soc ; 138(4): 1430-45, 2016 Feb 03.
Article in English | MEDLINE | ID: mdl-26745435

ABSTRACT

As part of an effort to examine the utility of antibody-drug conjugates (ADCs) beyond oncology indications, a novel pyrophosphate ester linker was discovered to enable the targeted delivery of glucocorticoids. As small molecules, these highly soluble phosphate ester drug linkers were found to have ideal orthogonal properties: robust plasma stability coupled with rapid release of payload in a lysosomal environment. Building upon these findings, site-specific ADCs were made between this drug linker combination and an antibody against human CD70, a receptor specifically expressed in immune cells but also found aberrantly expressed in multiple human carcinomas. Full characterization of these ADCs enabled procession to in vitro proof of concept, wherein ADCs 1-22 and 1-37 were demonstrated to afford potent, targeted delivery of glucocorticoids to a representative cell line, as measured by changes in glucocorticoid receptor-mediated gene mRNA levels. These activities were found to be antibody-, linker-, and payload-dependent. Preliminary mechanistic studies support the notion that lysosomal trafficking and enzymatic linker cleavage are required for activity and that the utility for the pyrophosphate linker may be general for internalizing ADCs as well as other targeted delivery platforms.


Subject(s)
Diphosphates/chemistry , Glucocorticoids/chemistry , Immunoconjugates/chemistry , Esters
3.
J Med Chem ; 50(14): 3205-13, 2007 Jul 12.
Article in English | MEDLINE | ID: mdl-17559204

ABSTRACT

The affinities of a diverse set of 500 drug-like molecules to cytochrome P450 isoforms 2C9 and 2D6 were measured using recombinant expressed enzyme. The dose-response curve of each compound was fitted with a series of equations representing typical or various types of atypical kinetics. Atypical kinetics was identified where the Akaike Information Criterion, plus other criteria, suggested the kinetics was more complex than expected for a Michaelis-Menten model. Approximately 20% of the compounds were excluded due to poor solubility, and approximately 15% were excluded due to fluorescence interference. Of the remaining compounds, roughly half were observed to bind with an affinity of 200 microM or lower for each of the two isoforms. Atypical kinetics was observed in 18% of the compounds that bind to cytochrome 2C9, but less than 2% for 2D6. The resulting collection of competitive inhibitors and inactive compounds were analyzed for trends in binding affinity. For CYP2D6, a clear relationship between polar surface area and charge was observed, with the most potent inhibitors having a formal positive charge and a low percent polar surface area. For CYP2C9, no clear trend between activity and physicochemical properties could be seen for the group as a whole; however, certain classes of compounds have altered frequencies of activity and atypical kinetics.


Subject(s)
Aryl Hydrocarbon Hydroxylases/antagonists & inhibitors , Cytochrome P-450 CYP2D6 Inhibitors , Enzyme Inhibitors/pharmacology , Cytochrome P-450 CYP2C9 , Enzyme Inhibitors/chemistry , Fluorescence , Kinetics , Quantitative Structure-Activity Relationship , Recombinant Proteins/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...