Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
EBioMedicine ; 97: 104826, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37806285

ABSTRACT

BACKGROUND: The exploitation of anti-tumour immunity, harnessed through immunomodulatory therapies, has fundamentally changed the treatment of primary liver cancer (PLC). However, this has posed significant challenges in preclinical research. Novel immunologically relevant models for PLC are urgently required to improve the translation from bench to bedside and back, explore and predict effective combinatorial therapies, aid novel drug discovery and develop personalised treatment modalities. METHODS: We used human precision-cut tissue slices (PCTS) derived from resected tumours to create a patient-specific immunocompetent disease model that captures the multifaceted and intricate heterogeneity of the tumour and the tumour microenvironment. Tissue architecture, tumour viability and treatment response to single agent and combination therapies were assessed longitudinally over 8 days of ex vivo culture by histological analysis, detection of proliferation/cell death markers, ATP content via HPLC. Immune cell infiltrate was assessed using PCR and immunofluorescence. Checkpoint receptor expression was quantified via Quantigene RNA assay. FINDINGS: After optimising the culture conditions, PCTS maintained the original tissue architecture, including tumour morphology, stroma and tumour-infiltrated leukocytes. Moreover, PCTS retained the tumour-specific immunophenotype over time, suggesting the utility of PCTS to investigate immunotherapeutic drug efficacy and identify non-responsiveness. INTERPRETATION: Here we have characterised the PCTS model and demonstrated its effectiveness as a robust preclinical tool that will significantly support the development of successful (immuno)therapeutic strategies for PLC. FUNDING: Foundation for Liver Research, London.


Subject(s)
Liver Neoplasms , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Tumor Microenvironment
2.
Aging Cell ; 18(3): e12950, 2019 06.
Article in English | MEDLINE | ID: mdl-30907060

ABSTRACT

Adipose tissue inflammation and dysfunction are associated with obesity-related insulin resistance and diabetes, but mechanisms underlying this relationship are unclear. Although senescent cells accumulate in adipose tissue of obese humans and rodents, a direct pathogenic role for these cells in the development of diabetes remains to be demonstrated. Here, we show that reducing senescent cell burden in obese mice, either by activating drug-inducible "suicide" genes driven by the p16Ink4a promoter or by treatment with senolytic agents, alleviates metabolic and adipose tissue dysfunction. These senolytic interventions improved glucose tolerance, enhanced insulin sensitivity, lowered circulating inflammatory mediators, and promoted adipogenesis in obese mice. Elimination of senescent cells also prevented the migration of transplanted monocytes into intra-abdominal adipose tissue and reduced the number of macrophages in this tissue. In addition, microalbuminuria, renal podocyte function, and cardiac diastolic function improved with senolytic therapy. Our results implicate cellular senescence as a causal factor in obesity-related inflammation and metabolic derangements and show that emerging senolytic agents hold promise for treating obesity-related metabolic dysfunction and its complications.


Subject(s)
Adipocytes/metabolism , Adipogenesis/drug effects , Adipose Tissue/metabolism , Cellular Senescence/drug effects , Inflammation/metabolism , Insulin Resistance/physiology , Obesity/metabolism , Adipocytes/cytology , Adipocytes/drug effects , Adipogenesis/physiology , Adipose Tissue/drug effects , Aging/metabolism , Aging/pathology , Animals , Cell Death/drug effects , Cell Death/genetics , Cell Death/physiology , Cell Line , Cellular Senescence/genetics , Cellular Senescence/physiology , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Dasatinib/pharmacology , Female , Ganciclovir/pharmacology , Glucose/metabolism , Humans , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Quercetin/pharmacology
3.
Aging (Albany NY) ; 9(3): 955-963, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28273655

ABSTRACT

Senescent cells accumulate with aging and at sites of pathology in multiple chronic diseases. Senolytics are drugs that selectively promote apoptosis of senescent cells by temporarily disabling the pro-survival pathways that enable senescent cells to resist the pro-apoptotic, pro-inflammatory factors that they themselves secrete. Reducing senescent cell burden by genetic approaches or by administering senolytics delays or alleviates multiple age- and disease-related adverse phenotypes in preclinical models. Reported senolytics include dasatinib, quercetin, navitoclax (ABT263), and piperlongumine. Here we report that fisetin, a naturally-occurring flavone with low toxicity, and A1331852 and A1155463, selective BCL-XL inhibitors that may have less hematological toxicity than the less specific BCL-2 family inhibitor navitoclax, are senolytic. Fisetin selectively induces apoptosis in senescent but not proliferating human umbilical vein endothelial cells (HUVECs). It is not senolytic in senescent IMR90 cells, a human lung fibroblast strain, or primary human preadipocytes. A1331852 and A1155463 are senolytic in HUVECs and IMR90 cells, but not preadipocytes. These agents may be better candidates for eventual translation into clinical interventions than some existing senolytics, such as navitoclax, which is associated with hematological toxicity.


Subject(s)
Antineoplastic Agents/pharmacology , Cellular Senescence/drug effects , Flavonoids/pharmacology , bcl-X Protein/antagonists & inhibitors , Aniline Compounds/pharmacology , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Flavonols , Humans , Sulfonamides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...