Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1152036, 2023.
Article in English | MEDLINE | ID: mdl-37360731

ABSTRACT

Optimal sensor location methods are crucial to realize a sensor profile that achieves pre-defined performance criteria as well as minimum cost. In recent times, indoor cultivation systems have leveraged on optimal sensor location schemes for effective monitoring at minimum cost. Although the goal of monitoring in indoor cultivation system is to facilitate efficient control, most of the previously proposed methods are ill-posed as they do not approach optimal sensor location from a control perspective. Therefore in this work, a genetic programming-based optimal sensor placement for greenhouse monitoring and control is presented from a control perspective. Starting with a reference micro-climate condition (temperature and relative humidity) obtained by aggregating measurements from 56 dual sensors distributed within a greenhouse, we show that genetic programming can be used to select a minimum number of sensor locations as well as a symbolic representation of how to aggregate them to efficiently estimate the reference measurements from the 56 sensors. The results presented in terms of Pearson's correlation coefficient (r) and three error-related metrics demonstrate that the proposed model achieves an average r of 0.999 for both temperature and humidity and an average RMSE value of 0.0822 and 0.2534 for temperate and relative humidity respectively. Conclusively, the resulting models make use of only eight (8) sensors, indicating that only eight (8) are required to facilitate the efficient monitoring and control of the greenhouse facility.

2.
J Anim Sci Technol ; 62(2): 227-238, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32292930

ABSTRACT

Use of raw feedstuffs for livestock is limited by low digestibility. Recently, fermentation of feedstuffs has been highlighted as a new way to improve nutrient absorption through the production of organic acids using inoculated microorganisms, which can also play a probiotic role. However, standard procedures for feedstuff fermentation have not been clearly defined because the process is influenced by climatic variation, and an analytical standard for fermented feedstuffs is lacking. This study aimed to evaluate the microbiological and biochemical changes of feedstuffs during fermentation at temperatures corresponding to different seasons (10°C, 20°C, 30°C, and 40°C). We also investigated the effects of yeast, lactic acid bacteria (LAB), and Bacillus spp. on fermentation and determined the results of their interactions during fermentation. The viable cells were observed within 8 days in single-strain fermentation. However, when feedstuffs were inoculated with a culture of mixed strains, LAB were predominant at low temperatures (10°C and 20°C), while Bacillus spp. was predominant at high temperatures (30°C and 40°C). A significant drop in pH from 6.5 to 4.3 was observed when LAB was the dominant strain in the culture, which correlated with the concentrations of lactic acid. Slight ethanol production was detected above 20°C regardless of the incubation temperature, suggesting active metabolism of yeast, despite this organism making up a marginal portion of the microbes in the mixed culture. These results suggested that fermentation temperature significantly affects microbiological profiles and biochemical parameters, such as pH and the lactic acid concentration, of fermented feedstuffs. Our data provide valuable information for the determination of industrial standards for fermented feedstuffs.

SELECTION OF CITATIONS
SEARCH DETAIL
...