Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr ; 144(10): 1571-8, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25122644

ABSTRACT

Many studies have shown that risk factors that are independent of blood pressure (BP) can contribute to the development of cardiac hypertrophy (CH). Among these factors, high-salt (HS) intake was prominent. Although some studies have attempted to elucidate the role of salt in the development of this disease, the mechanisms by which salt acts are not yet fully understood. Thus, the aim of this study was to better understand the mechanisms of CH and interstitial fibrosis (IF) caused by HS intake. Male Wistar rats were divided into 5 groups according to diet [normal salt (NS; 1.27% NaCl) or HS (8% NaCl)] and treatment [losartan (LOS) (HS+LOS group), hydralazine (HZ) (HS+HZ group), or N-acetylcysteine (NAC) (HS+NAC group)], which was given in the drinking water. Tail-cuff BP, transverse diameter of the cardiomyocyte, IF, angiotensin II type 1 receptor (AT1) gene and protein expression, serum aldosterone, cardiac angiotensin II, cardiac thiobarbituric acid-reactive substances, and binding of conformation-specific anti-AT1 and anti-angiotensin II type 2 receptor (AT2) antibodies in the 2 ventricles were measured. Based on the left ventricle transverse diameter data, the primary finding was the occurrence of significant BP-independent CH in the HS+HZ group (96% of the HS group) and a partial or total prevention of such hypertrophy via treatment with NAC or LOS (81% and 67% of the HS group, respectively). The significant total or partial prevention of IF using all 3 treatments (HS+HZ, 27%; HS+LOS, 27%; and HS+NAC, 58% of the HS group, respectively), and an increase in the AT1 gene and protein expression and activity in groups that developed CH, confirmed that CH occurred via the AT1 in this experimental model. Thus, this study unveiled some relevant previously unknown mechanisms of CH induced by chronic HS intake in Wistar rats. The link of oxidative stress with CH in our experimental model is very interesting and stimulates further evaluation for its full comprehension.


Subject(s)
Cardiomegaly/pathology , Myocytes, Cardiac/drug effects , Receptor, Angiotensin, Type 1/metabolism , Sodium Chloride, Dietary/adverse effects , Acetylcysteine/pharmacology , Aldosterone/blood , Angiotensin II/metabolism , Animals , Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Body Weight , Cardiomegaly/chemically induced , Cardiomegaly/genetics , Heart Rate , Hematocrit , Hydralazine/pharmacology , Losartan/pharmacology , Male , Myocytes, Cardiac/metabolism , Potassium/blood , Potassium/urine , Rats , Rats, Wistar , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 2/genetics , Receptor, Angiotensin, Type 2/metabolism , Renin-Angiotensin System/drug effects , Sodium/blood , Sodium/urine , Sodium Chloride, Dietary/administration & dosage , Thiobarbituric Acid Reactive Substances/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...