Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 38(6): 1457-1466, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31864855

ABSTRACT

Toxoplasmosis is a zoonotic disease caused by the parasite Toxoplasma gondii. Up to a third of the global human population is estimated to carry a T. gondii infection, which can result in severe complications in immunocompromised individuals and pregnant women. Humans and animals can become infected by ingesting either tissue cysts containing T. gondii bradyzoites, from raw or undercooked meat, or sporulated oocysts from environmental sources. T. gondii oocysts are released in the faeces of cats and other felids, which are the parasite's definitive hosts, leading to environmental contamination. Therefore, vaccination of the feline host against T. gondii is an interesting strategy to interrupt the parasitic life cycle and subsequently limit contamination of intermediate hosts. With this goal in mind, we tested in cats, an attenuated live strain of T. gondii deleted for the Mic1 and Mic3 genes (Mic1-3KO) that was previously shown to be an efficient vaccine candidate in mouse and sheep models. Subcutaneous or oral vaccination routes induced a high specific antibody titer in the cat sera, indicating that the Mic1-3KO strain is immunogenic for cats. To assess protection induced by the vaccine candidate strain, we followed oocysts shedding by vaccinated cats, after oral challenge with a T. gondii wild-type strain. Surprisingly, a high antibody titer did not prevent cats from shedding oocysts from the challenge strain, regardless of the vaccination route. Our results show that the Mic1-3KO vaccine candidate is immunogenic in the feline host, is well tolerated and safe, but does not confer protection against oocysts shedding after natural infection with wild type T. gondii. This result highlights the particular relationship between T. gondii and its unique definitive host, which indicates the need for further investigations to improve vaccination strategies to limit environmental and livestock contaminations.


Subject(s)
Cat Diseases , Immunogenicity, Vaccine , Protozoan Vaccines/immunology , Toxoplasmosis, Animal , Animals , Cat Diseases/parasitology , Cat Diseases/prevention & control , Cats , Feces/parasitology , Gene Knockout Techniques , Oocysts , Toxoplasma/genetics , Toxoplasmosis, Animal/prevention & control
2.
Toxicol In Vitro ; 40: 243-247, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28063820

ABSTRACT

Assessment of ocular discomfort caused by veterinary care products is less legitimately regulated than that caused by human care products. The Slug Mucosal Irritation (SMI) assay was adapted to evaluate canine hygiene shampoos to predict ocular discomfort. Experiments were performed using four commercial canine shampoos, a baby care product, and two controls (ArtTear® and BAC1%). Groups of 3 slugs were tested with 5% dilution of the 7 test substances. The negative control (ArtTear®) was the best tolerated. The baby care product Mixa bébé as well as Douxo Entretien Démêlant and Phlox Shampooing Entretien were classified to cause mild ocular discomfort. Together with the positive control (BAC 1%), Shampooing Physiologique Virbac and Physiovet Shampooing were considered to cause severe ocular discomfort. Different intensities of ocular discomfort were measured for veterinary care products. The SMI model was considered as a reproducible and adaptable evaluation method for screening veterinary care products causing ocular discomfort.


Subject(s)
Eye/drug effects , Hair Preparations/toxicity , Irritants/toxicity , Mucous Membrane/drug effects , Animals , Gastropoda , Toxicity Tests/methods
3.
J Feline Med Surg ; 19(2): 177-184, 2017 02.
Article in English | MEDLINE | ID: mdl-26662037

ABSTRACT

Objectives The aims of the study were to determine the in vitro drug release of guar gum-coated capsules of ronidazole, and to evaluate the pharmacokinetics and efficacy of this formulation for the treatment of cats naturally infected with Tritrichomonas foetus. Methods The pharmacokinetics of ronidazole were evaluated in five healthy cats and five cats infected with T foetus. In a second step, the clinical efficacy of these capsules was evaluated by a controlled, randomised, double-blind clinical trial performed in 47 infected cats from French catteries. In this study, cats were randomly allocated to either the ronidazole treatment group (n = 25) or a placebo group (n = 22). Ronidazole (30 mg/kg) q24h for 14 days was administered to the treated cats. After 14 days of treatment, the presence of T foetus was tested by conventional PCR assay. Results In the pharmacokinetic study, a delayed peak plasma concentration was observed in healthy and infected cats, with no significant difference between these two groups (mean geometric mean of 9 h for time to maximum plasma concentration [Tmax], 21.6 µg/ml for time to maximum plasma concentration [Cmax] and 467.4 µg/h/ml for the area under the curve [AUC] in healthy cats; and 9.4 h for Tmax, 17.1 µg/ml for Cmax and 481 µg/h/ml for AUC in infected cats). In the clinical trial, T foetus was detected in 16% of cats from the treated group and 82% of cats from the placebo group at the end of the study ( P <0.001). No clinical signs of adverse drug reactions were observed. Conclusions and relevance Oral administration of guar gum-coated capsules of ronidazole at a dose of 30 mg/kg once daily for 14 days delays the peak plasma concentration and eradicates infection in most cases.


Subject(s)
Antiprotozoal Agents/administration & dosage , Cat Diseases/drug therapy , Galactans/administration & dosage , Mannans/administration & dosage , Plant Gums/administration & dosage , Protozoan Infections/drug therapy , Ronidazole/administration & dosage , Tritrichomonas foetus , Administration, Oral , Animals , Area Under Curve , Cat Diseases/parasitology , Cats , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...