Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 14: 1402851, 2024.
Article in English | MEDLINE | ID: mdl-38993641

ABSTRACT

Background: Ovarian cancer is the leading cause of mortality among gynecological malignancies. Carboplatin and poly (ADP-ribose) polymerase inhibitors (PARPi) are often implemented in the treatment of ovarian cancer. Homologous recombination deficient (HRD) tumors demonstrate increased sensitivity to these treatments; however, many ovarian cancer patients are homologous recombination proficient (HRP). TTFields are non-invasive electric fields that induce an HRD-like phenotype in various cancer types. The current study aimed to investigate the impact of TTFields applied together with carboplatin or PARPi (olaparib or niraparib) in preclinical ovarian cancer models. Methods: A2780 (HRP), OVCAR3 (HRD), and A2780cis (platinum-resistant) human ovarian cancer cells were treated in vitro with TTFields (1 V/cm RMS, 200 kHz, 72 h), alone or with various drug concentrations. Treated cells were measured for cell count, colony formation, apoptosis, DNA damage, expression of DNA repair proteins, and cell cycle. In vivo, ID8-fLuc (HRP) ovarian cancer cells were inoculated intraperitoneally to C57BL/6 mice, which were then treated with either sham, TTFields (200 kHz), olaparib (50 mg/kg), or TTFields plus olaparib; over a period of four weeks. Tumor growth was analyzed using bioluminescent imaging at treatment cessation; and survival analysis was performed. Results: The nature of TTFields-drug interaction was dependent on the drug's underlying mechanism of action and on the genetic background of the cells, with synergistic interactions between TTFields and carboplatin or PARPi seen in HRP and resistant cells. Treated cells demonstrated elevated levels of DNA damage, accompanied by G2/M arrest, and induction of an HRD-like phenotype. In the tumor-bearing mice, TTFields and olaparib co-treatment resulted in reduced tumor volume and a survival benefit relative to olaparib monotherapy and to control. Conclusion: By inducing an HRD-like phenotype, TTFields sensitize HRP and resistant ovarian cancer cells to treatment with carboplatin or PARPi, potentially mitigating a-priori and de novo drug resistance, a major limitation in ovarian cancer treatment.

2.
Front Microbiol ; 14: 1296558, 2023.
Article in English | MEDLINE | ID: mdl-38094629

ABSTRACT

Coronaviruses are the causative agents of several recent outbreaks, including the COVID-19 pandemic. One therapeutic approach is blocking viral binding to the host receptor. As binding largely depends on electrostatic interactions, we hypothesized possible inhibition of viral infection through application of electric fields, and tested the effectiveness of Tumor Treating Fields (TTFields), a clinically approved cancer treatment based on delivery of electric fields. In preclinical models, TTFields were found to inhibit coronavirus infection and replication, leading to lower viral secretion and higher cell survival, and to formation of progeny virions with lower infectivity, overall demonstrating antiviral activity. In a pilot clinical study (NCT04953234), TTFields therapy was safe for patients with severe COVID-19, also demonstrating preliminary effectiveness data, that correlated with higher device usage.

3.
J Neurooncol ; 163(1): 83-94, 2023 May.
Article in English | MEDLINE | ID: mdl-37131108

ABSTRACT

PURPOSE: Tumor Treating Fields (TTFields) are electric fields that disrupt cellular processes critical for cancer cell viability and tumor progression, ultimately leading to cell death. TTFields therapy is approved for treatment of newly-diagnosed glioblastoma (GBM) concurrent with maintenance temozolomide (TMZ). Recently, the benefit of TMZ in combination with lomustine (CCNU) was demonstrated in patients with O6-methylguanine DNA methyltransferase (MGMT) promoter methylation. The addition of adjuvant TTFields to TMZ plus CCNU further improved patient outcomes, leading to a CE mark for this regimen. The current in vitro study aimed to elucidate the mechanism underlying the benefit of this treatment protocol. METHODS: Human GBM cell lines with different MGMT promoter methylation statuses were treated with TTFields, TMZ, and CCNU, and effectiveness was tested by cell count, apoptosis, colony formation, and DNA damage measurements. Expression levels of relevant DNA-repair proteins were examined by western blot analysis. RESULTS: TTFields concomitant with TMZ displayed an additive effect, irrespective of MGMT expression levels. TTFields concomitant with CCNU or with CCNU plus TMZ was additive in MGMT-expressing cells and synergistic in MGMT-non-expressing cells. TTFields downregulated the FA-BRCA pathway and increased DNA damage induced by the chemotherapy combination. CONCLUSIONS: The results support the clinical benefit demonstrated for TTFields concomitant with TMZ plus CCNU. Since the FA-BRCA pathway is required for repair of DNA cross-links induced by CCNU in the absence of MGMT, the synergy demonstrated in MGMT promoter methylated cells when TTFields and CCNU were co-applied may be attributed to the BRCAness state induced by TTFields.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Lomustine/therapeutic use , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Cell Line , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Line, Tumor
5.
Cancers (Basel) ; 14(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35740624

ABSTRACT

Hepatocellular carcinoma (HCC), a highly aggressive liver cancer, is a leading cause of cancer-related death. Tumor Treating Fields (TTFields) are electric fields that exert antimitotic effects on cancerous cells. The aims of the current research were to test the efficacy of TTFields in HCC, explore the underlying mechanisms, and investigate the possible combination of TTFields with sorafenib, one of the few front-line treatments for patients with advanced HCC. HepG2 and Huh-7D12 human HCC cell lines were treated with TTFields at various frequencies to determine the optimal frequency eliciting maximal cell count reduction. Clonogenic, apoptotic effects, and autophagy induction were measured. The efficacy of TTFields alone and with concomitant sorafenib was tested in cell cultures and in an orthotopic N1S1 rat model. Tumor volume was examined at the beginning and following 5 days of treatment. At study cessation, tumors were weighed and examined by immunohistochemistry to assess autophagy and apoptosis. TTFields were found in vitro to exert maximal effect at 150 kHz, reducing cell count and colony formation, increasing apoptosis and autophagy, and augmenting the effects of sorafenib. In animals, TTFields concomitant with sorafenib reduced tumor weight and volume fold change, and increased cases of stable disease following treatment versus TTFields or sorafenib alone. While each treatment alone elevated levels of autophagy relative to control, TTFields concomitant with sorafenib induced a significant increase versus control in tumor ER stress and apoptosis levels, demonstrating increased stress under the multimodal treatment. Overall, TTFields treatment demonstrated efficacy and enhanced the effects of sorafenib for the treatment of HCC in vitro and in vivo, via a mechanism involving induction of autophagy.

6.
Lung Cancer ; 160: 99-110, 2021 10.
Article in English | MEDLINE | ID: mdl-34482104

ABSTRACT

OBJECTIVES: Tumor Treating Fields (TTFields) are low intensity, intermediate frequency, alternating electric fields with antimitotic effects on cancerous cells. TTFields concomitant with pemetrexed and a platinum agent are approved in the US and EU as first line therapy for unresectable, locally advanced or metastatic malignant pleural mesothelioma (MPM). The goal of the current study was to characterize the mechanism of action of TTFields in MPM cell lines and animal models. METHODS: Human MPM cell lines MSTO-211H and NCI-H2052 were treated with TTFields to determine the frequency that elicits maximal cytotoxicity. The effect of TTFields on DNA damage and repair, and the cytotoxic effect of TTFields in combination with cisplatin and/or pemetrexed were examined. Efficacy of TTFields concomitant with cisplatin and pemetrexed was evaluated in orthotopic IL-45 and subcutaneous RN5 murine models. RESULTS: TTFields at a frequency of 150 kHz demonstrated the highest cytotoxicity to MPM cells. Application of 150 kHz TTFields resulted in increased formation of DNA double strand breaks, elevated expression of DNA damage induced cell cycle arrest proteins, and reduced expression of Fanconi Anemia (FA)-BRCA DNA repair pathway proteins. Co-treatment of TTFields with cisplatin or pemetrexed significantly increased treatment efficacy versus each modality alone, with additivity and synergy exhibited by the TTFields-pemetrexed and TTFields-cisplatin combinations, respectively. In animal models, tumor volume was significantly lower for the TTFields-cisplatin-pemetrexed combination compared to control, accompanied by increased DNA damage within the tumor. CONCLUSION: This research demonstrated that the efficacy of TTFields for the treatment of MPM is associated with reduced expression of FA-BRCA pathway proteins and increased DNA damage. This mechanism of action is consistent with the observed synergism for TTFields-cisplatin vs additivity for TTFields-pemetrexed, as cisplatin-induced DNA damage is repaired via the FA-BRCA pathway.


Subject(s)
Fanconi Anemia , Lung Neoplasms , Mesothelioma, Malignant , Animals , Cisplatin , Humans , Lung Neoplasms/drug therapy , Mice , Pemetrexed
7.
Sci Signal ; 10(481)2017 May 30.
Article in English | MEDLINE | ID: mdl-28559444

ABSTRACT

The establishment of epithelial architecture is a complex process involving cross-talk between cells and the basement membrane. Basement membrane assembly requires integrin activity but the role of the associated actomyosin cytoskeleton is poorly understood. Here, we identify the actin-bundling protein T-plastin (Pls3) as a regulator of basement membrane assembly and epidermal morphogenesis. In utero depletion of Pls3 transcripts in mouse embryos caused basement membrane and polarity defects in the epidermis but had little effect on cell adhesion and differentiation. Loss-of-function experiments demonstrated that the apicobasal polarity defects were secondary to the disruption of the basement membrane. However, the basement membrane itself was profoundly sensitive to subtle perturbations in the actin cytoskeleton. We further show that Pls3 localized to the cell cortex, where it was essential for the localization and activation of myosin II. Inhibition of myosin II motor activity disrupted basement membrane organization. Our results provide insights into the regulation of cortical actomyosin and its importance for basement membrane assembly and skin morphogenesis.


Subject(s)
Basement Membrane/physiology , Embryo, Mammalian/cytology , Epidermis/growth & development , Membrane Glycoproteins/physiology , Microfilament Proteins/physiology , Morphogenesis , Actin Cytoskeleton/metabolism , Actomyosin/metabolism , Animals , Cell Adhesion/physiology , Cell Differentiation , Cell Polarity , Embryo, Mammalian/metabolism , Epidermis/metabolism , Female , Mice , Mice, Inbred ICR , Microtubules/metabolism , Myosin Type II/metabolism
8.
Front Microbiol ; 6: 530, 2015.
Article in English | MEDLINE | ID: mdl-26074908

ABSTRACT

Bacteriophages (phages) are ubiquitous viruses that control the growth and diversity of bacteria. Although they have no tropism to mammalian cells, accumulated evidence suggests that phages are not neutral to the mammalian macro-host and can promote immunomodulatory and anti-tumorigenic activities. Here we demonstrate that Ff phages that do not display any proteins or peptides could inhibit the growth of subcutaneous glioblastoma tumors in mice and that this activity is mediated in part by lipopolysaccharide molecules attached to their virion. Using the intranasal route, a non-invasive approach to deliver therapeutics directly to the CNS, we further show that phages rapidly accumulate in the brains of mice and could attenuate progression of orthotopic glioblastoma. Taken together, this study provides new insight into phages non-bacterial activities and demonstrates the feasibility of delivering Ff phages intranasally to treat brain malignancies.

9.
J Immunother ; 33(2): 146-54, 2010.
Article in English | MEDLINE | ID: mdl-20139776

ABSTRACT

The tumor suppressor gene p53 is mutated in more than half of human tumors. One important characteristic of p53 mutants is their accumulation in the nucleus of cancer cells. Thus, reactivation of mutant p53 proteins may trigger massive apoptosis in tumor cells. Pharmacologic methods are currently under development to induce mutant p53 proteins to resume their wild-type function. We have identified a human single-chain Fv fragment, designated as transcriptional transactivation and apoptosis restoring (TAR1), which specifically and with high affinity binds to mutant p53 and restores its wild-type active conformation. Binding of TAR1 to mutant p53 induced transcriptional transactivation of p53 target genes and down-regulation of mutant p53 transcriptional target genes. TAR1 treatment induced apoptosis in a variety of cell lines endogenously expressing p53 carrying different point mutations DNA contact or structural p53 mutants. Moreover, in an animal model of mice carrying human xenografts, TAR1 induced tumor regression with no apparent deleterious side effects. Thus, it may be considered as a potential candidate for anticancer treatment, targeting tumors with mutant p53.


Subject(s)
Mutant Proteins/immunology , Mutant Proteins/metabolism , Neoplasms, Experimental/immunology , Single-Chain Antibodies/administration & dosage , Tumor Suppressor Protein p53/immunology , Animals , Apoptosis/drug effects , Caspase 3/immunology , Caspase 3/metabolism , Caspase 7/immunology , Caspase 7/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Mice , Mice, Nude , Mutant Proteins/genetics , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Protein Binding , Signal Transduction/drug effects , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/isolation & purification , Single-Chain Antibodies/pharmacology , Transcriptional Activation , Tumor Burden/drug effects , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...