Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
mSystems ; 5(4)2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32817385

ABSTRACT

In bacteria, adaptation to changes in the environment is mainly controlled through two-component signal transduction systems (TCSs). Most bacteria contain dozens of TCSs, each of them responsible for sensing a different range of signals and controlling the expression of a repertoire of target genes (regulon). Over the years, identification of the regulon controlled by each individual TCS in different bacteria has been a recurrent question. However, limitations associated with the classical approaches used have left our knowledge far from complete. In this report, using a pioneering approach in which a strain devoid of the complete nonessential TCS network was systematically complemented with the constitutively active form of each response regulator, we have reconstituted the regulon of each TCS of S. aureus in the absence of interference between members of the family. Transcriptome sequencing (RNA-Seq) and proteomics allowed us to determine the size, complexity, and insulation of each regulon and to identify the genes regulated exclusively by one or many TCSs. This gain-of-function strategy provides the first description of the complete TCS regulon in a living cell, which we expect will be useful to understand the pathobiology of this important pathogen.IMPORTANCE Bacteria are able to sense environmental conditions and respond accordingly. Their sensorial system relies on pairs of sensory and regulatory proteins, known as two-component systems (TCSs). The majority of bacteria contain dozens of TCSs, each of them responsible for sensing and responding to a different range of signals. Traditionally, the function of each TCS has been determined by analyzing the changes in gene expression caused by the absence of individual TCSs. Here, we used a bacterial strain deprived of the complete TC sensorial system to introduce, one by one, the active form of every TCS. This gain-of-function strategy allowed us to identify the changes in gene expression conferred by each TCS without interference of other members of the family.

2.
Lett Appl Microbiol ; 59(2): 127-32, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24785827

ABSTRACT

UNLABELLED: Bacterial comfort is central to biotechnological applications. Here, we report the characterization of different sensoring systems, the first step within a broader synthetic biology-inspired light-mediated strategy to determine Escherichia coli perception of environmental factors critical to bacterial performance. We did so by directly 'asking' bacterial cultures with light-encoded questions corresponding to the excitation wavelength of fluorescent proteins placed under the control of environment-sensitive promoters. We built four genetic constructions with fluorescent proteins responding to glucose, temperature, oxygen and nitrogen; and a fifth construction allowing UV-induced expression of heterologous genes. Our engineered strains proved able to give feedback in response to key environmental factors and to express heterologous proteins upon light induction. This light-based dialoguing strategy reported here is the first effort towards developing a human-bacteria interphase with both fundamental and applied implications. SIGNIFICANCE AND IMPACT OF THE STUDY: The results we present here are at the core of a larger synthetic biology research effort aiming at establishing a dialogue with bacteria. The framework is to convert the human voice into electric pulses, these into light pulses exciting bacterial fluorescent proteins, and convert light-emission back into electric pulses, which will be finally transformed into synthetic voice messages. We report here the first results of the project, in the form of light-based determination of key parameters for bacterial comfort. The ultimate goal of this strategy is to combine different engineered populations to have a combined feedback from the pool.


Subject(s)
Escherichia coli/genetics , Gene Expression Regulation, Bacterial/radiation effects , Escherichia coli/metabolism , Escherichia coli/radiation effects , Gene-Environment Interaction , Genes, Bacterial , Genes, Reporter , Glucose/physiology , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Nitrogen/physiology , Oxygen/physiology , Promoter Regions, Genetic , Synthetic Biology , Transcriptional Activation/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...