Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 114: 104200, 2021 02.
Article in English | MEDLINE | ID: mdl-33214109

ABSTRACT

The disruptive nature of water presents a significant challenge when designing synthetic adhesives that maintain functionality in wet conditions. However, many animal adhesives can withstand high humidity or underwater conditions, and some are even enhanced by them. An understudied mechanism in such systems is the influence of material plasticization by water to induce adhesive work through deformation. Cribellate silk is a dry adhesive used by particular spiders to capture moving prey. It presents as a candidate for testing the water plasticization model as it can remain functional at high humidity despite lacking an aqueous component. We performed herein tensile and adhesion tests on cribellate threads from the spider, Hickmania troglodytes; a spider that lives within wet cave environments. We found that the work of adhesion of its cribellate threads increased as the axial fibre deformed during pull-off experiments. This effect was enhanced when the silk was wetted and as spider body size increased. Dry threads on the other hand were stiff with low adhesion. We rationalized our experiments by a series of scaling law models. We concluded that these cribellate threads operate best when the nanofibrils and axial fibers both contribute to adhesion. Design of future synthetic materials could draw inspiration from how water facilitates, rather than diminishes, cribellate silk adhesion.


Subject(s)
Spiders , Animals , Humidity , Physical Phenomena , Silk , Water
2.
Philos Trans R Soc Lond B Biol Sci ; 370(1662): 20140060, 2015 Feb 19.
Article in English | MEDLINE | ID: mdl-25561679

ABSTRACT

Rates of biodiversity loss are higher in freshwater ecosystems than in most terrestrial or marine ecosystems, making freshwater conservation a priority. However, prioritization methods are impeded by insufficient knowledge on the distribution and conservation status of freshwater taxa, particularly invertebrates. We evaluated the extinction risk of the world's 590 freshwater crayfish species using the IUCN Categories and Criteria and found 32% of all species are threatened with extinction. The level of extinction risk differed between families, with proportionally more threatened species in the Parastacidae and Astacidae than in the Cambaridae. Four described species were Extinct and 21% were assessed as Data Deficient. There was geographical variation in the dominant threats affecting the main centres of crayfish diversity. The majority of threatened US and Mexican species face threats associated with urban development, pollution, damming and water management. Conversely, the majority of Australian threatened species are affected by climate change, harvesting, agriculture and invasive species. Only a small proportion of crayfish are found within the boundaries of protected areas, suggesting that alternative means of long-term protection will be required. Our study highlights many of the significant challenges yet to come for freshwater biodiversity unless conservation planning shifts from a reactive to proactive approach.


Subject(s)
Animal Distribution , Astacoidea/physiology , Conservation of Natural Resources/methods , Endangered Species , Animals , Australia , Conservation of Natural Resources/trends , Fresh Water , Geography , Population Dynamics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...