Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci Space Res (Amst) ; 41: 86-99, 2024 May.
Article in English | MEDLINE | ID: mdl-38670657

ABSTRACT

Recent discoveries related to the habitability and astrobiological relevance of the outer Solar System have expanded our understanding of where and how life may have originated. As a result, the Icy Worlds of the outer Solar System have become among the highest priority targets for future spacecraft missions dedicated to astrobiology-focused and/or direct life detection objectives. This, in turn, has led to a renewed interest in planetary protection concerns and policies for the exploration of these worlds and has been a topic of discussion within the COSPAR (Committee on Space Research) Panel on Planetary Protection. This paper summarizes the results of those discussions, reviewing the current knowledge and the history of planetary protection considerations for Icy Worlds as well as suggesting ways forward. Based on those discussions, we therefore suggest to (1) Establish a new definition for Icy Worlds for Planetary Protection that captures the outer Solar System moons and dwarf planets like Pluto, but excludes more primitive bodies such as comets, centaurs, and asteroids: Icy Worlds in our Solar System are defined as all bodies with an outermost layer that is believed to be greater than 50 % water ice by volume and have enough mass to assume a nearly round shape. (2) Establish indices for the lower limits of Earth life with regards to water activity (LLAw) and temperature (LLT) and apply them into all areas of the COSPAR Planetary Protection Policy. These values are currently set at 0.5 and -28 °C and were originally established for defining Mars Special Regions; (3) Establish LLT as a parameter to assign categorization for Icy Worlds missions. The suggested categorization will have a 1000-year period of biological exploration, to be applied to all Icy Worlds and not just Europa and Enceladus as is currently the case. (4) Have all missions consider the possibility of impact. Transient thermal anomalies caused by impact would be acceptable so long as there is less than 10-4 probability of a single microbe reaching deeper environments where temperature is >LLT in the period of biological exploration. (5) Restructure or remove Category II* from the policy as it becomes largely redundant with this new approach, (6) Establish that any sample return from an Icy World should be Category V restricted Earth return.


Subject(s)
Exobiology , Extraterrestrial Environment , Planets , Solar System , Space Flight , Spacecraft , History, 20th Century
2.
Sci Rep ; 8(1): 5002, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29568040

ABSTRACT

Annually averaged solar radiation in the McMurdo Dry Valleys, Antarctica has varied by over 20 W m-2 during the past three decades; however, the drivers of this variability are unknown. Because small differences in radiation are important to water availability and ecosystem functioning in polar deserts, determining the causes are important to predictions of future desert processes. We examine the potential drivers of solar variability and systematically eliminate all but stratospheric sulfur dioxide. We argue that increases in stratospheric sulfur dioxide increase stratospheric aerosol optical depth and decrease solar intensity. Because of the polar location of the McMurdo Dry Valleys (77-78°S) and relatively long solar ray path through the stratosphere, terrestrial solar intensity is sensitive to small differences in stratospheric transmissivity. Important sources of sulfur dioxide include natural (wildfires and volcanic eruptions) and anthropogenic emission.

3.
Nat Commun ; 6: 6831, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25919365

ABSTRACT

The occurrence of groundwater in Antarctica, particularly in the ice-free regions and along the coastal margins is poorly understood. Here we use an airborne transient electromagnetic (AEM) sensor to produce extensive imagery of resistivity beneath Taylor Valley. Regional-scale zones of low subsurface resistivity were detected that are inconsistent with the high resistivity of glacier ice or dry permafrost in this region. We interpret these results as an indication that liquid, with sufficiently high solute content, exists at temperatures well below freezing and considered within the range suitable for microbial life. These inferred brines are widespread within permafrost and extend below glaciers and lakes. One system emanates from below Taylor Glacier into Lake Bonney and a second system connects the ocean with the eastern 18 km of the valley. A connection between these two basins was not detected to the depth limitation of the AEM survey (∼350 m).

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 61(10): 2413-7, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15876550

ABSTRACT

Analysis of lacustrine sediments is an accepted method for deciphering the palaeoenvironment of a lake's catchment area, as each strata of the sediment gives information about the rock type it was eroded from and also the state of the lake, i.e. oxic or anoxic. Antarctica has long been accepted as a putative analogue for Mars, so the analysis of Antarctic material may give results that can be compared to sediments on Mars. Raman spectroscopy has been selected as the method of analysis as it does not destroy the sample, can be used in situ and requires very little sample preparation. It is a suitable method for analysing both inorganic and organic matter and a miniature spectrometer is currently being developed for use in the field. The results from the spectrometers can serve as a guide for analysing sediments on Mars. It has been shown that Raman spectroscopy can detect and differentiate between oxic and anoxic sediments. Both 1064 and 785 nm wavelengths are suitable for laser excitation of organic and inorganic matter.


Subject(s)
Geologic Sediments/chemistry , Minerals/chemistry , Spectrum Analysis, Raman , Water Supply , Antarctic Regions , Oxygen
5.
Science ; 290(5492): 711-4, 2000 Oct 27.
Article in English | MEDLINE | ID: mdl-11184199
6.
Science ; 290(5492): 711c-4c, 2000 Oct 27.
Article in English | MEDLINE | ID: mdl-17780509
7.
Antarct Sci ; 12(2): 131-40, 2000.
Article in English | MEDLINE | ID: mdl-11543521

ABSTRACT

A process-oriented study was carried out in White Smoke lake, Bunger Hills, East Antarctica, a perennially ice-covered (1.8 to 2.8 m thick) epishelf (tidally-forced) lake. The lake water has a low conductivity and is relatively well mixed. Sediments are transferred from the adjacent glacier to the lake when glacier ice surrounding the sediment is sublimated at the surface and replaced by accumulating ice from below. The lake bottom at the west end of the lake is mostly rocky with a scant sediment cover. The east end contains a thick sediment profile. Grain size and delta 13C increase with sediment depth, indicating a more proximal glacier in the past. Sedimentary 210Pb and 137Cs signals are exceptionally strong, probably a result of the focusing effect of the large glacial catchment area. The post-bomb and pre-bomb radiocarbon reservoirs are c. 725 14C yr and c. 1950 14C yr, respectively. Radiocarbon dating indicates that the east end of the lake is >3 ka BP, while photographic evidence and the absence of sediment cover indicate that the west end has formed only over the last century. Our results indicate that the southern ice edge of Bunger Hills has been relatively stable with only minor fluctuations (on the scale of hundreds of metres) over the last 3000 years.


Subject(s)
Carbon Dioxide/analysis , Fresh Water/chemistry , Geologic Sediments/chemistry , Ice/analysis , Antarctic Regions , Carbon Isotopes , Carbon Radioisotopes , Cesium Radioisotopes , Exobiology , Fresh Water/microbiology , Geologic Sediments/analysis , Geologic Sediments/microbiology , Geological Phenomena , Geology , Lead Radioisotopes , Minerals/analysis , Oxygen Isotopes , Water Microbiology
8.
Science ; 280(5372): 2095-8, 1998 Jun 26.
Article in English | MEDLINE | ID: mdl-9641910

ABSTRACT

The permanent ice covers of Antarctic lakes in the McMurdo Dry Valleys develop liquid water inclusions in response to solar heating of internal aeolian-derived sediments. The ice sediment particles serve as nutrient (inorganic and organic)-enriched microzones for the establishment of a physiologically and ecologically complex microbial consortium capable of contemporaneous photosynthesis, nitrogen fixation, and decomposition. The consortium is capable of physically and chemically establishing and modifying a relatively nutrient- and organic matter-enriched microbial "oasis" embedded in the lake ice cover.


Subject(s)
Bacteria/growth & development , Ecosystem , Geologic Sediments/microbiology , Ice , Water Microbiology , Antarctic Regions , Bacteria/metabolism , Carbon/metabolism , Carbon Dioxide/metabolism , Cyanobacteria/genetics , Cyanobacteria/growth & development , Cyanobacteria/metabolism , Exobiology , Jupiter , Mars , Nitrogen Fixation , Photosynthesis , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics
9.
J Paleolimnol ; 10: 85-114, 1994.
Article in English | MEDLINE | ID: mdl-11539840

ABSTRACT

The McMurdo Dry Valleys presently contain more than 20 permanent lakes and ponds, which vary markedly in character. All, with the exception of a hypersaline pond, have a perennial ice-cover. The dry valley lakes, and lakes in other ice-free regions of continental Antarctica, are unique on this planet in that they consistently maintain a thick year-round ice cover (2.8-6.0 m) over liquid water. The persistent ice covers minimize wind-generated currents and reduce light penetration, as well as restricting sediment deposition into a lake and the exchange of atmospheric gases between the water column and the atmosphere. From a paleolimnological perspective, the dry valley lakes offer an important record of catchment and environmental changes. These lakes are also modern-day equivalents of periglacial lakes that were common during glacial periods at temperate latitudes. The present lakes are mostly remnants of larger glacial lakes that occupied the valleys in the past, perhaps up to 4.6 Ma ago. Two of the valleys contain evidence of being filled with large glacial lakes within the last 10000 years. Repeated drying and filling events since then have left a characteristic impression on the salt profiles of some lakes creating a unique paleo-indicator within the water column. These events are also marked in the sediments by the concentration and dilution of certain chemical constituents, particularly salts, and are also corroborated by carbonate speciation and oxygen isotope analysis. Stratigraphic analysis of dry valley lake sediments is made difficult by the occurrence of an 'old carbon' reservoir creating spurious radiocarbon dates, and by the high degree of spatial variability in lake sedimentation. From a biological perspective, the lakes are relatively simple, containing various taxa of planktonic and benthic microorganisms, but no higher forms of life, which is an advantage to paleolimnologists because there is no bioturbation in the sediments. Useful biological paleo-indicators found in the sediments include cyanobacterial filament sheaths, diatom frustules and other eukaryotic algal cells, protozoan cysts, photosynthetic pigments, and minerals (e.g. carbonates) associated with microbial activity. Future work will benefit from fully characterizing the connection between the ice covers, environmental conditions, and paleo-indicators, thereby allowing refinement of inferences made concerning the paleoenvironment. New dating techniques need to be tested in this environment to overcome the problems associated with radiocarbon dating. The establishment of a detailed and focused paleolimnological campaign is proposed.


Subject(s)
Cold Climate , Fresh Water/analysis , Geologic Sediments/analysis , Paleontology , Water Microbiology , Antarctic Regions , Desert Climate , Evolution, Planetary , Fresh Water/microbiology , Geologic Sediments/microbiology , Geological Phenomena , Geology , Ice
SELECTION OF CITATIONS
SEARCH DETAIL
...