Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Issues Mol Biol ; 29: 3-22, 2018.
Article in English | MEDLINE | ID: mdl-29648541

ABSTRACT

The class Mollicutes (trivial name "mycoplasma") is composed of wall-less bacteria with reduced genomes whose evolution was long thought to be only driven by gene losses. Recent evidences of massive horizontal gene transfer (HGT) within and across species provided a new frame to understand the successful adaptation of these minimal bacteria to a broad range of hosts. Mobile genetic elements are being identified in a growing number of mycoplasma species, but integrative and conjugative elements (ICEs) are emerging as pivotal in HGT. While sharing common traits with other bacterial ICEs, such as their chromosomal integration and the use of a type IV secretion system to mediate horizontal dissemination, mycoplasma ICEs (MICEs) revealed unique features: their chromosomal integration is totally random and driven by a DDE recombinase related to the Mutator-like superfamily. Mycoplasma conjugation is not restricted to ICE transmission, but also involves the transfer of large chromosomal fragments that generates progenies with mosaic genomes, nearly every position of chromosome being mobile. Mycoplasmas have thus developed efficient ways to gain access to a considerable reservoir of genetic resources distributed among a vast number of species expanding the concept of minimal cell to the broader context of flowing information.


Subject(s)
Gene Transfer, Horizontal , Mycoplasma/physiology , Tenericutes/physiology , Chromosomes, Bacterial , Conjugation, Genetic , Evolution, Molecular , Mycoplasma/classification , Response Elements , Tenericutes/classification
2.
Int J Food Microbiol ; 109(1-2): 88-96, 2006 May 25.
Article in English | MEDLINE | ID: mdl-16503066

ABSTRACT

The ability of 12 Staphylococcus xylosus strains to form biofilm was determined through the study of different criteria. Eleven out of the 12 strains were able to form biofilm, 10 preferentially on hydrophilic support (glass) and one, S. xylosus C2a, on both hydrophilic and hydrophobic (polystyrene) supports. The determination of bacterial surface properties showed that all strains were negatively charged with five strains moderately hydrophobic and seven hydrophilic. The bap and icaA genes, important for biofilm formation of some staphylococci, were searched. All strains were bap positive but icaA negative. Furthermore, S. xylosus strain C2a was studied on two supports widely used in the food industry, polytetrafluoroethylene (PTFE, hydrophobic) and stainless steel (hydrophilic) and appeared to adhere preferentially on stainless steel. Addition of 20 g/l of NaCl to Tryptic Soy Broth medium (TSB) did not improve significantly its adhesion but enhanced both bacterial growth and cell survival, which were optimum in this medium. Environmental scanning electron microscopy showed that S. xylosus C2a colonized the surface of stainless steel chips with intercellular spaces. The strain formed cell aggregates embedded in an amorphous polysaccharidic matrix. Indeed, synthesis of polysaccharides increased during growth on stainless steel chips in TSB.


Subject(s)
Bacterial Adhesion/physiology , Biofilms/growth & development , Staphylococcus/physiology , Culture Media/chemistry , Food Microbiology , Microscopy, Electron, Scanning , Polysaccharides, Bacterial/biosynthesis , Polytetrafluoroethylene , Stainless Steel , Staphylococcus/metabolism , Staphylococcus/ultrastructure , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...