Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Rep Prog Phys ; 82(1): 016501, 2019 01.
Article in English | MEDLINE | ID: mdl-30462611

ABSTRACT

Carbon can have many different forms and the characterisation of structural features on a length scale of 1 Å to 10 µm is important in defining its physical and chemical properties for the various forms. The use of either electro-magnetic (x-ray) or particle (neutron) beams plays an important role in determining these characteristics. In this paper, we review the various techniques that are used to determine the structural features by experimental means and how the data are processed to give the required information in a suitable form for detailed analysis by computer simulation. Diffraction methods are used for studies of the atomic arrangement and small-angle scattering techniques are used for studies of microporosity in the sample materials. The experimental data obtained from a wide range of different carbon materials are considered and how these results can be used as a basis for modelling the structures in a quantitative manner is also considered. This information underpins their use as active components in a wide range of functional materials.

2.
Dalton Trans ; 43(20): 7391-9, 2014 May 28.
Article in English | MEDLINE | ID: mdl-24637546

ABSTRACT

In common with rocksalt-type alkali halide phases and also semiconductors such as GeTe and SnTe, SnSe forms all-surface two atom-thick low dimensional crystals when encapsulated within single walled nanotubes (SWNTs) with diameters below ∼1.4 nm. Whereas previous density functional theory (DFT) studies indicate that optimised low-dimensional trigonal HgTe changes from a semi-metal to a semi-conductor, low-dimensional SnSe crystals typically undergo band-gap expansion. In slightly wider diameter SWNTs (∼1.4-1.6 nm), we observe that three atom thick low dimensional SnSe crystals undergo a previously unobserved form of a shear inversion phase change resulting in two discrete strain states in a section of curved nanotube. Under low-voltage (i.e. 80-100 kV) imaging conditions in a transmission electron microscope, encapsulated SnSe crystals undergo longitudinal and rotational oscillations, possibly as a result of the increase in the inelastic scattering cross-section of the sample at those voltages.

3.
J Phys Condens Matter ; 25(46): 465105, 2013 Nov 20.
Article in English | MEDLINE | ID: mdl-24132016

ABSTRACT

Previous papers in this series have involved the study of water/ice in a sample of a mesoporous SBA-15 silica with a pore size of 86 Å, filling-factors f of 1.15 and 0.95. The present paper extends the study to partially filled samples with f = 0.6 and 0.4. It is found that the ice formed in the pores has characteristics that differ markedly from those seen in the previous measurements. For f = 0.6, there is a significant amount of hexagonal ice, as seen by the presence of the normal ice triplet. For f = 0.4, the triplet peaks are not seen, indicating the predominant formation of cubic ice superimposed on a broad diffuse scattering peak that is attributed to a defective form of low-density amorphous ice. A parameter-fitting routine has been used (as previously) to extract the variation of the peak intensities and shapes with temperature. A separate component analysis procedure confirms these conclusions and emphasizes the role of plastic ice in the phase conversion process for the 260-200 K temperature region. A comparison of the liquid phase data for filling-factors of 0.4 and 0.95 indicates that the structural characteristics of the water vary according to the thickness of the layer, as suggested by computer predictions.


Subject(s)
Ice , Silicon Dioxide/chemistry , Porosity , Temperature
4.
J Phys Chem A ; 117(37): 9057-61, 2013 Sep 19.
Article in English | MEDLINE | ID: mdl-23978218

ABSTRACT

The structure of dahlia-type single-walled carbon nanohorn aggregates has been modeled by classical molecular dynamics simulations, and the validity of the model has been verified by neutron diffraction. Computer-generated models consisted of an outer part formed from single-walled carbon nanohorns with diameters of 20-50 Å and a length of 400 Å and an inner turbostratic graphite-like core with a diameter of 130 Å. The diffracted intensity and the pair correlation function computed for such a constructed model are in good agreement with the neutron diffraction experimental data. The proposed turbostratic inner core explains the occurrence of the additional (002) and (004) graphitic peaks in the diffraction pattern of the studied sample and provides information about the interior structure of the dahlia-type aggregates.

5.
Phys Chem Chem Phys ; 14(38): 13255-61, 2012 Oct 14.
Article in English | MEDLINE | ID: mdl-22918522

ABSTRACT

High-speed photographic studies and neutron diffraction measurements have been made of water under tension in a Berthelot tube. Liquid water was cooled below the normal ice-nucleation temperature and was in a doubly-metastable state prior to a collapse of the liquid state. This transition was accompanied by an exothermic heat release corresponding with the rapid production of a solid phase nucleated by cavitation. Photographic techniques have been used to observe the phase transition over short time scales in which a solidification front is observed to propagate through the sample. Significantly, other images at a shorter time interval reveal the prior formation of cavitation bubbles at the beginning of the process. The ice-nucleation process is explained in terms of a mechanism involving hydrodynamically-induced changes in tension in supercooled water in the near vicinity of an expanding cavitation bubble. Previous explanations have attributed the nucleation of the solid phase to the production of high positive pressures. Corresponding results are presented which show the initial neutron diffraction pattern after ice-nucleation. The observed pattern does not exhibit the usual crystalline pattern of hexagonal ice [I(h)] that is formed under ambient conditions, but indicates the presence of other ice forms. The composite features can be attributed to a mixture of amorphous ice, ice-I(h)/I(c) and the high-pressure form, ice-III, and the diffraction pattern continues to evolve over a time period of about an hour.

6.
J Phys Condens Matter ; 20(20): 205107, 2008 May 21.
Article in English | MEDLINE | ID: mdl-21694288

ABSTRACT

Neutron diffraction measurements for D(2)O in SBA-15 silica of pore diameter 86 Å have been made in a temperature range from 300 to 100 K. The pore-filling factor for the liquid phase is 0.95, resulting in an 'almost-filled' sample. The nucleation and transformation of the ice phase were determined for cooling and warming cycles at two different rates. The primary nucleation event at 258 K leads to a defective form of ice-I with predominantly cubic ice features. For temperatures below the main nucleation event, the data indicate the formation of an interfacial layer of disordered water/ice that varies with temperature and is reversible. The main diffraction peak for the water phase shows similar features to those observed in earlier studies, indicating enhanced hydrogen bonding and network correlations for the confined phase as the temperature is decreased. A detailed profile analysis of the triplet peak is presented in the accompanying paper (Seyed-Yazdi et al 2008 J. Phys.: Condens. Matter 20 205108).

7.
J Phys Condens Matter ; 20(20): 205108, 2008 May 21.
Article in English | MEDLINE | ID: mdl-21694289

ABSTRACT

The diffraction results for the formation of ice in 86 Å diameter pores of a SBA-15 silica sample are analysed to provide information on the characteristics of the ice created in the pores. The asymmetric triplet at ∼1.7 Å(-1), which involves several overlapping peaks, is particularly relevant to the different ice phases and contains a number of components that can be individually identified. The use of a set of three peaks with an asymmetric profile to represent the possibility of facetted growth in the pores was found to give an unsatisfactory fit to the data. The alternative method involving the introduction of additional peaks with a normal symmetric profile was found to give excellent fits with five components and was the preferred analytic procedure. Three peaks could be directly linked to the positions for the triplet of hexagonal ice, I(h), and one of the other two broad peaks could be associated with a form of amorphous ice. The variation of the peak intensity (and position) was systematic with temperature for both cooling and heating runs. The results indicate that a disordered state of ice is formed as a component with the defective crystalline ices. The position of a broad diffraction peak is intermediate between that of high-density and low-density amorphous ice. The remaining component peak is less broad but does not relate directly to any of the known ice phases and cannot be assigned to any specific structural feature at the present time.

8.
J Phys Condens Matter ; 19(41): 415117, 2007 Oct 17.
Article in English | MEDLINE | ID: mdl-28192329

ABSTRACT

Neutron diffraction and nuclear magnetic resonance (NMR) relaxation studies have been made of water/ice in mesoporous SBA-15 silica with ordered structures of cylindrical mesopores with a pore diameter ∼8.6 nm, over the temperature range 180-300 K. Both measurements show similar depressed freezing and melting points due to the Gibb-Thomson effect. The neutron diffraction measurements for fully filled pores show, in addition to cubic and hexagonal crystalline ice, the presence of a disordered water/ice component extending a further 50-80 K, down to around or below 200 K. NMR relaxation measurements over the same temperature range show a free induction decay that is partly Gaussian and characteristic of brittle ice but that also exhibits a longer exponential relaxation component. An argument has been made (Liu et al 2006 J. Phys:. Condens. Matter 18 10009-28; Webber et al 2007 Magn. Reson. Imag. 25 533-6) to suggest that this is an observation of ice in a plastic or rotationally mobile state, and that there is a fully reversible inter-conversion between brittle and plastic states of ice as the temperature is lowered or raised. More recent detailed NMR measurements are also discussed that allow the extraction of activation enthalpies and an estimate to be made of the equilibrium thickness, as a function of temperature, if the the assumption is made that the plastic component is in the form of a layer at the silica interface. The two different techniques suggest a maximum layer thickness of about 1.0-1.5 nm.

9.
Faraday Discuss ; 125: 327-42; discussion 391-407, 2004.
Article in English | MEDLINE | ID: mdl-14750679

ABSTRACT

Mesoporous alumina membranes ("anodic aluminium oxide", or "AAO") are made by anodic oxidation of aluminium metal. These membranes contain hexagonal arrays of parallel non-intersecting cylindrical pores perpendicular to the membrane surface. By varying the anodisation voltage, the pore diameters are controllable within the range 5-250 nm. We have used AAO membranes as templates for the electrochemical deposition of metals within the pores to produce nanowires. These represent assemblies of one-dimensional quantum wires with prospective applications in electronic, optoelectronic and magnetic devices. Detailed characterisation of the structures of these nanowire assemblies on a variety of length scales is essential to understand their physical properties and evaluate their possible applications. We have used EXAFS, XANES, WAXS, high energy X-ray diffraction and SAXS to study their structure and bonding. In this paper we report the results of our studies of four different nanowire systems supported in AAO membranes. These are the ferromagnetic metals iron and cobalt, the superconducting metal tin, and the semiconductor gallium nitride. Iron nanowires in pores of diameter over the range 12 nm-72 nm are structurally very similar to bcc bulk iron. They have a strong preferred orientation within the alumina pores. Their XANES shows significant differences from that of bulk iron, showing that the electronic structure of the iron nanowires depends systematically on their diameter. Cobalt nanowires are composed of a mixture of hcp and fcc phases, but the ratio of the two phases does not depend in a simple way on the pore diameter or preparation conditions. In bulk cobalt, the fcc beta-phase is normally stable only at high temperatures. Strong preferred orientation of the c-axis in the pores was found. Tin nanowires in alumina membranes with pores diameters between 12 nm and 72 nm have a tetragonal beta-structure at ambient temperature and also at 80 K. Magnetic susceptibility measurements show that they are diamagnetic, and become superconducting at the same temperature as bulk tin (3.7 K). Gallium nitride nanowires have been prepared in alumina membranes with pore diameter 24 nm by a novel method. Gallium nitrate was deposited in the pores from aqueous solution and thermolysed at 1000 degrees C to form Ga2O3, which was reacted with ammonia at 1000 degrees C. The GaN nanowires have the wurtzite structure. Preparation at 1150 degrees C led to the incorporation of aluminium in the GaN. The mesoscopic ordering of the pores in the AAO membranes and their filling by metal nanowires has been studied by SAXS, which shows patterns of Bragg peaks arising from the pore arrays. Additionally, the cobalt nanowires have been the subject of an initial ASAXS study.

SELECTION OF CITATIONS
SEARCH DETAIL
...