Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(3): 1696-1708, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38126723

ABSTRACT

Investigating atom-surface interactions is the key to an in-depth understanding of chemical processes at interfaces, which are of central importance in many fields - from heterogeneous catalysis to corrosion. In this work, we present a joint experimental and theoretical effort to gain insights into the atomistic details of hydrogen atom scattering at the α-Al2O3(0001) surface. Surprisingly, this system has been hardly studied to date, although hydrogen atoms as well as α-Al2O3 are omnipresent in catalysis as reactive species and support oxide, respectively. We address this system by performing hydrogen atom beam scattering experiments and molecular dynamics (MD) simulations based on a high-dimensional machine learning potential trained to density functional theory data. Using this combination of methods we are able to probe the properties of the multidimensional potential energy surface governing the scattering process. Specifically, we compare the angular distribution and the kinetic energy loss of the scattered atoms obtained in experiment with a large number of MD trajectories, which, moreover, allow to identify the underlying impact sites at the surface.

2.
J Chem Phys ; 155(3): 034702, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34293879

ABSTRACT

We report inelastic differential scattering experiments for energetic H and D atoms colliding at a Pt(111) surface with and without adsorbed O atoms. Dramatically, more energy loss is seen for scattering from the Pt(111) surface compared to p(2 × 2) O on Pt(111), indicating that O adsorption reduces the probability of electron-hole pair (EHP) excitation. We produced a new full-dimensional potential energy surface for H interaction with O/Pt that reproduces density functional theory energies accurately. We then attempted to model the EHP excitation in H/D scattering with molecular dynamics simulations employing the electronic density information from the Pt(111) to calculate electronic friction at the level of the local density friction approximation (LDFA). This approach, which assumes that O atoms simply block the Pt atom from the approaching H atom, fails to reproduce experiment due to the fact that the effective collision cross section of the O atom is only 10% of the area of the surface unit cell. An empirical adiabatic sphere model that reduces electronic nonadiabaticity within an O-Pt bonding length scale of 2.8 Å reproduces experiment well, suggesting that the electronic structure changes induced by chemisorption of O atoms nearly remove the H atom's ability to excite EHPs in the Pt. Alternatives to LDFA friction are needed to account for this adsorbate effect.

3.
J Chem Phys ; 150(18): 184704, 2019 May 14.
Article in English | MEDLINE | ID: mdl-31091898

ABSTRACT

Efficient transfer of translational energy to electron-hole pair excitation involving multiple collisions dominates H atom collisions with metal surfaces. For this reason, H atom interaction with metal surfaces cannot be modeled within the commonly used Born-Oppenheimer approximation (BOA). This fact makes H atom scattering from metal surfaces an ideal model system for dynamics that go beyond the BOA. We chose the H/Au(111) system as a model system to obtain a detailed dataset that can serve as a benchmark for theoretical models developed for describing electronically nonadiabatic processes at metal surfaces. Therefore, we investigate the influence of various experimental parameters on the energy loss in detail including isotopic variant, incidence translational energy, incidence polar and azimuthal angles, and outgoing scattering angles.

4.
Science ; 364(6438): 379-382, 2019 04 26.
Article in English | MEDLINE | ID: mdl-31023921

ABSTRACT

Viewing the atomic-scale motion and energy dissipation pathways involved in forming a covalent bond is a longstanding challenge for chemistry. We performed scattering experiments of H atoms from graphene and observed a bimodal translational energy loss distribution. Using accurate first-principles dynamics simulations, we show that the quasi-elastic channel involves scattering through the physisorption well where collision sites are near the centers of the six-membered C-rings. The second channel results from transient C-H bond formation, where H atoms lose 1 to 2 electron volts of energy within a 10-femtosecond interaction time. This remarkably rapid form of intramolecular vibrational relaxation results from the C atom's rehybridization during bond formation and is responsible for an unexpectedly high sticking probability of H on graphene.

6.
Rev Sci Instrum ; 89(9): 094101, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30278702

ABSTRACT

We present an apparatus to study inelastic H or D atom scattering from surfaces under ultra-high vacuum conditions. The apparatus provides high resolution information on scattering energy and angular distributions by combining a photolysis-based atom source with Rydberg atom tagging time-of-flight. Using hydrogen halides as precursors, H and D atom beams can be formed with energies from 500 meV up to 7 eV, with an energy spread of down to 2 meV and an intensity of up to 108 atoms per pulse. A six-axis manipulator holds the sample and allows variation of both polar and azimuthal incidence angles. Surface temperature can be varied from 45 K up to 1500 K. The apparatus' energy resolution ( E / Δ E ) can be as high as 1000 and its angular resolution can be adjusted between 0.3° and 3°.

7.
Proc Natl Acad Sci U S A ; 115(4): 680-684, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29311297

ABSTRACT

The Born-Oppenheimer approximation (BOA) provides the foundation for virtually all computational studies of chemical binding and reactivity, and it is the justification for the widely used "balls and springs" picture of molecules. The BOA assumes that nuclei effectively stand still on the timescale of electronic motion, due to their large masses relative to electrons. This implies electrons never change their energy quantum state. When molecules react, atoms must move, meaning that electrons may become excited in violation of the BOA. Such electronic excitation is clearly seen for: (i) Schottky diodes where H adsorption at Ag surfaces produces electrical "chemicurrent;" (ii) Au-based metal-insulator-metal (MIM) devices, where chemicurrents arise from H-H surface recombination; and (iii) Inelastic energy transfer, where H collisions with Au surfaces show H-atom translation excites the metal's electrons. As part of this work, we report isotopically selective hydrogen/deuterium (H/D) translational inelasticity measurements in collisions with Ag and Au. Together, these experiments provide an opportunity to test new theories that simultaneously describe both nuclear and electronic motion, a standing challenge to the field. Here, we show results of a recently developed first-principles theory that quantitatively explains both inelastic scattering experiments that probe nuclear motion and chemicurrent experiments that probe electronic excitation. The theory explains the magnitude of chemicurrents on Ag Schottky diodes and resolves an apparent paradox--chemicurrents exhibit a much larger isotope effect than does H/D inelastic scattering. It also explains why, unlike Ag-based Schottky diodes, Au-based MIM devices are insensitive to H adsorption.

8.
J Chem Phys ; 148(3): 034706, 2018 Jan 21.
Article in English | MEDLINE | ID: mdl-29352780

ABSTRACT

Inelastic scattering of H and D atoms from the (111) surfaces of six fcc transition metals (Au, Pt, Ag, Pd, Cu, and Ni) was investigated, and in each case, excitation of electron-hole pairs dominates the inelasticity. The results are very similar for all six metals. Differences in the average kinetic energy losses between metals can mainly be attributed to different efficiencies in the coupling to phonons due to the different masses of the metal atoms. The experimental observations can be reproduced by molecular dynamics simulations based on full-dimensional potential energy surfaces and including electronic excitations by using electronic friction in the local density friction approximation. The determining factors for the energy loss are the electron density at the surface, which is similar for all six metals, and the mass ratio between the impinging atoms and the surface atoms. Details of the electronic structure of the metal do not play a significant role. The experimentally validated simulations are used to explore sticking over a wide range of incidence conditions. We find that the sticking probability increases for H and D collisions near normal incidence-consistent with a previously reported penetration-resurfacing mechanism. The sticking probability for H or D on any of these metals may be represented as a simple function of the incidence energy, Ein, metal atom mass, M, and incidence angle, 𝜗in. S=(S0+a⋅Ein+b⋅M)*(1-h(𝜗in-c)(1-cos(𝜗in-c)d⋅h(Ein-e)(Ein-e))), where h is the Heaviside step function and for H, S0 = 1.081, a = -0.125 eV-1, b=-8.40⋅10-4 u-1, c = 28.88°, d = 1.166 eV-1, and e = 0.442 eV; whereas for D, S0 = 1.120, a = -0.124 eV-1, b=-1.20⋅10-3 u-1, c = 28.62°, d = 1.196 eV-1, and e = 0.474 eV.

9.
Phys Chem Chem Phys ; 18(22): 15399-405, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27210285

ABSTRACT

Photodissociation dynamics of HBr at a series of photolysis wavelengths in the range of 123.90-125.90 nm and at around 137.0 nm have been studied using the H atom Rydberg "tagging" time-of-flight technique. The branching fractions between the channels forming ground Br((2)P3/2) and spin-orbit excited Br((2)P1/2) atoms together with the angular distributions of the products corresponding to these two channels have been measured. The photolysis wavelengths in this work excited the HBr molecule from the ground state X (1)Σ(+) to various Rydberg states and the V (1)Σ(+) ion-pair valence state. Predissociation via these states displays rich behavior, indicating the influence of the nature of initially excited states and the coupling to other bound or repulsive states on the predissociation dynamics.

10.
Science ; 350(6266): 1346-9, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-26612832

ABSTRACT

How much translational energy atoms and molecules lose in collisions at surfaces determines whether they adsorb or scatter. The fact that hydrogen (H) atoms stick to metal surfaces poses a basic question. Momentum and energy conservation demands that the light H atom cannot efficiently transfer its energy to the heavier atoms of the solid in a binary collision. How then do H atoms efficiently stick to metal surfaces? We show through experiments that H-atom collisions at an insulating surface (an adsorbed xenon layer on a gold single-crystal surface) are indeed nearly elastic, following the predictions of energy and momentum conservation. In contrast, H-atom collisions with the bare gold surface exhibit a large loss of translational energy that can be reproduced by an atomic-level simulation describing electron-hole pair excitation.

11.
J Phys Chem A ; 117(46): 11673-8, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-23496141

ABSTRACT

Photodissociation dynamics of HNCO at photolysis wavelengths between 200 and 240 nm have been studied using the H-atom Rydberg tagging time-of-flight technique. Product translational energy distributions and angular distributions have been determined. At low photon energy excitation, the product translational energy distribution is nearly statistical and the angular distribution is isotropic, which is consistent with an indirect dissociation mechanism, i.e., internal conversion from S1 to S0 surface and dissociation on S0 surface. As the photon energy increases, a direct dissociation pathway on S1 surface opens up. The product translational energy distribution appears to be quite nonstatistical and the product angular distribution is anisotropic. The fraction of direct dissociation pathway is determined to be 36 ± 5% at 202.67 nm photolysis. Vibrational structures are observed in both direct and indirect dissociation pathways, which can be assigned to the NCO bending mode excitation with some stretching excitation.


Subject(s)
Cyanates/chemistry , Ultraviolet Rays , Photochemical Processes , Photolysis , Quantum Theory , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...