Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Neurophysiol Pract ; 7: 228-238, 2022.
Article in English | MEDLINE | ID: mdl-35935596

ABSTRACT

Objective: To investigate the optimal combination of somatosensory- and transcranial motor-evoked potential (SSEP/tcMEP) modalities and monitored extremities during clip reconstruction of aneurysms of the anterior cerebral artery (ACA) and its branches. Methods: A retrospective review of 104 cases of surgical clipping of ruptured and unruptured aneurysms was performed. SSEP/tcMEP changes and postoperative motor deficits (PMDs) were assessed from upper and lower extremities (UE/LE) to determine the diagnostic accuracy of each modality separately and in combination. Results: PMDs were reported in 9 of 104 patients; 7 LE and 8 UE (3.6% of 415 extremities). Evoked potential (EP) monitoring failed to predict a PMD in 8 extremities (1.9%). Seven of 8 false negatives had subarachnoid hemorrhage. Sensitivity and specificity in LE were 50% and 97% for tcMEP, 71% and 98% for SSEP, and 83% and 98% for dual-monitoring of both tcMEP/SSEP. Sensitivity and specificity in UE were 38% and 99% for tcMEP, and 50% and 97% for tcMEP/SSEP, respectively. Conclusions: Combined tcMEP/SSEP is more accurate than single-modality monitoring for LE but is relatively insensitive for UE PMDs. Significance: During ACA aneurysm clipping, multiple factors may confound the ability of EP monitoring to predict PMDs, especially brachiofacial hemiparesis caused by perforator insufficiency.

2.
J Acoust Soc Am ; 151(5): 3116, 2022 05.
Article in English | MEDLINE | ID: mdl-35649891

ABSTRACT

Acoustics research involving human participants typically takes place in specialized laboratory settings. Listening studies, for example, may present controlled sounds using calibrated transducers in sound-attenuating or anechoic chambers. In contrast, remote testing takes place outside of the laboratory in everyday settings (e.g., participants' homes). Remote testing could provide greater access to participants, larger sample sizes, and opportunities to characterize performance in typical listening environments at the cost of reduced control of environmental conditions, less precise calibration, and inconsistency in attentional state and/or response behaviors from relatively smaller sample sizes and unintuitive experimental tasks. The Acoustical Society of America Technical Committee on Psychological and Physiological Acoustics launched the Task Force on Remote Testing (https://tcppasa.org/remotetesting/) in May 2020 with goals of surveying approaches and platforms available to support remote testing and identifying challenges and considerations for prospective investigators. The results of this task force survey were made available online in the form of a set of Wiki pages and summarized in this report. This report outlines the state-of-the-art of remote testing in auditory-related research as of August 2021, which is based on the Wiki and a literature search of papers published in this area since 2020, and provides three case studies to demonstrate feasibility during practice.


Subject(s)
Acoustics , Auditory Perception , Attention/physiology , Humans , Prospective Studies , Sound
SELECTION OF CITATIONS
SEARCH DETAIL
...