Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cognition ; 183: 67-81, 2019 02.
Article in English | MEDLINE | ID: mdl-30419508

ABSTRACT

Rapid developments in the fields of learning and object recognition have been obtained by successfully developing and using methods for learning from a large number of labeled image examples. However, such current methods cannot explain infants' learning of new concepts based on their visual experience, in particular, the ability to learn complex concepts without external guidance, as well as the natural order in which related concepts are acquired. A remarkable example of early visual learning is the category of 'containers' and the notion of 'containment'. Surprisingly, this is one of the earliest spatial relations to be learned, starting already around 3 month of age, and preceding other common relations (e.g., 'support', 'in-between'). In this work we present a model, which explains infants' capacity of learning 'containment' and related concepts by 'just looking', together with their empirical development trajectory. Learning occurs in the model fast and without external guidance, relying only on perceptual processes that are present in the first months of life. Instead of labeled training examples, the system provides its own internal supervision to guide the learning process. We show how the detection of so-called 'paradoxical occlusion' provides natural internal supervision, which guides the system to gradually acquire a range of useful containment-related concepts. Similar mechanisms of using implicit internal supervision can have broad application in other cognitive domains as well as artificial intelligent systems, because they alleviate the need for supplying extensive external supervision, and because they can guide the learning process to extract concepts that are meaningful to the observer, even if they are not by themselves obvious, or salient in the input.


Subject(s)
Child Development/physiology , Learning/physiology , Models, Theoretical , Space Perception/physiology , Visual Perception/physiology , Humans , Infant
2.
J Physiol Paris ; 107(1-2): 107-15, 2013.
Article in English | MEDLINE | ID: mdl-22789551

ABSTRACT

Rats move their whiskers to acquire information about their environment. It has been observed that they palpate novel objects and objects they are required to localize in space. We analyze whisker-based object localization using two complementary paradigms, namely, active learning and intrinsic-reward reinforcement learning. Active learning algorithms select the next training samples according to the hypothesized solution in order to better discriminate between correct and incorrect labels. Intrinsic-reward reinforcement learning uses prediction errors as the reward to an actor-critic design, such that behavior converges to the one that optimizes the learning process. We show that in the context of object localization, the two paradigms result in palpation whisking as their respective optimal solution. These results suggest that rats may employ principles of active learning and/or intrinsic reward in tactile exploration and can guide future research to seek the underlying neuronal mechanisms that implement them. Furthermore, these paradigms are easily transferable to biomimetic whisker-based artificial sensors and can improve the active exploration of their environment.


Subject(s)
Discrimination, Psychological/physiology , Exploratory Behavior/physiology , Learning/physiology , Reinforcement, Psychology , Vibrissae/innervation , Algorithms , Animals , Biomimetics , Models, Neurological , Physical Stimulation/methods , Rats
3.
Proc Natl Acad Sci U S A ; 109(44): 18215-20, 2012 Oct 30.
Article in English | MEDLINE | ID: mdl-23012418

ABSTRACT

Early in development, infants learn to solve visual problems that are highly challenging for current computational methods. We present a model that deals with two fundamental problems in which the gap between computational difficulty and infant learning is particularly striking: learning to recognize hands and learning to recognize gaze direction. The model is shown a stream of natural videos and learns without any supervision to detect human hands by appearance and by context, as well as direction of gaze, in complex natural scenes. The algorithm is guided by an empirically motivated innate mechanism--the detection of "mover" events in dynamic images, which are the events of a moving image region causing a stationary region to move or change after contact. Mover events provide an internal teaching signal, which is shown to be more effective than alternative cues and sufficient for the efficient acquisition of hand and gaze representations. The implications go beyond the specific tasks, by showing how domain-specific "proto concepts" can guide the system to acquire meaningful concepts, which are significant to the observer but statistically inconspicuous in the sensory input.


Subject(s)
Visual Perception , Hand , Humans , Task Performance and Analysis
4.
Learn Mem ; 14(6): 457-67, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17562897

ABSTRACT

We measured long-term memory for a narrative film. During the study session, participants watched a 27-min movie episode, without instructions to remember it. During the test session, administered at a delay ranging from 3 h to 9 mo after the study session, long-term memory for the movie was probed using a computerized questionnaire that assessed cued recall, recognition, and metamemory of movie events sampled approximately 20 sec apart. The performance of each group of participants was measured at a single time point only. The participants remembered many events in the movie even months after watching it. Analysis of performance, using multiple measures, indicates differences between recent (weeks) and remote (months) memory. While high-confidence recognition performance was a reliable index of memory throughout the measured time span, cued recall accuracy was higher for relatively recent information. Analysis of different content elements in the movie revealed differential memory performance profiles according to time since encoding. We also used the data to propose lower limits on the capacity of long-term memory. This experimental paradigm is useful not only for the analysis of behavioral performance that results from encoding episodes in a continuous real-life-like situation, but is also suitable for studying brain substrates and processes of real-life memory using functional brain imaging.


Subject(s)
Memory , Motion Pictures , Narration , Adult , Cues , Female , Humans , Male , Memory, Short-Term , Mental Recall , Recognition, Psychology , Surveys and Questionnaires , Time Factors
5.
Eur J Neurosci ; 19(4): 1115-8, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15009160

ABSTRACT

Recent reports have revitalized the debate on whether, for each item in memory, consolidation occurs just once, or whether, upon their activation in retrieval, items in memory undergo reconsolidation. Further, it has been recently reported that following retrieval in the absence of reinforcer, the activated memory can either reconsolidate or extinguish, depending on the training history. This raises the question whether consolidation, extinction and reconsolidation share neuronal mechanisms, and moreover, whether reconsolidation recapitulates consolidation. In conditioned taste aversion (CTA), consolidation depends on protein synthesis in the central nucleus of the amygdala, whereas extinction depends on protein synthesis in the basolateral nuclei of the amygdala. Here we show that inhibition of protein synthesis in either of these nuclei has no effect on CTA memory under conditions that initiate reconsolidation. This implies that reconsolidation does not recapitulate consolidation, and that consolidation, reconsolidation and extinction are different processes.


Subject(s)
Amygdala/physiology , Avoidance Learning/physiology , Extinction, Psychological/physiology , Nerve Net/physiology , Taste/physiology , Animals , Male , Memory/physiology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...