Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 372(6543): 716-721, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33986176

ABSTRACT

Transcription and metabolism both influence cell function, but dedicated transcriptional control of metabolic pathways that regulate cell fate has rarely been defined. We discovered, using a chemical suppressor screen, that inhibition of the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH) rescues erythroid differentiation in bloodless zebrafish moonshine (mon) mutant embryos defective for transcriptional intermediary factor 1 gamma (tif1γ). This rescue depends on the functional link of DHODH to mitochondrial respiration. The transcription elongation factor TIF1γ directly controls coenzyme Q (CoQ) synthesis gene expression. Upon tif1γ loss, CoQ levels are reduced, and a high succinate/α-ketoglutarate ratio leads to increased histone methylation. A CoQ analog rescues mon's bloodless phenotype. These results demonstrate that mitochondrial metabolism is a key output of a lineage transcription factor that drives cell fate decisions in the early blood lineage.


Subject(s)
Erythropoiesis , Mitochondria/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Zebrafish Proteins/metabolism , Animals , Citric Acid Cycle , DNA Methylation , Dihydroorotate Dehydrogenase , Electron Transport , Embryo, Nonmammalian/metabolism , Enzyme Inhibitors/pharmacology , Gene Expression Regulation , Histones/metabolism , Leflunomide/pharmacology , Metabolic Networks and Pathways , Methylation , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Oxygen Consumption , Transcription Factors/genetics , Ubiquinone/metabolism , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics
2.
Nat Cell Biol ; 22(4): 372-379, 2020 04.
Article in English | MEDLINE | ID: mdl-32231306

ABSTRACT

The availability of nucleotides has a direct impact on transcription. The inhibition of dihydroorotate dehydrogenase (DHODH) with leflunomide impacts nucleotide pools by reducing pyrimidine levels. Leflunomide abrogates the effective transcription elongation of genes required for neural crest development and melanoma growth in vivo1. To define the mechanism of action, we undertook an in vivo chemical suppressor screen for restoration of neural crest after leflunomide treatment. Surprisingly, we found that alterations in progesterone and progesterone receptor (Pgr) signalling strongly suppressed leflunomide-mediated neural crest effects in zebrafish. In addition, progesterone bypasses the transcriptional elongation block resulting from Paf complex deficiency, rescuing neural crest defects in ctr9 morphant and paf1(alnz24) mutant embryos. Using proteomics, we found that Pgr binds the RNA helicase protein Ddx21. ddx21-deficient zebrafish show resistance to leflunomide-induced stress. At a molecular level, nucleotide depletion reduced the chromatin occupancy of DDX21 in human A375 melanoma cells. Nucleotide supplementation reversed the gene expression signature and DDX21 occupancy changes prompted by leflunomide. Together, our results show that DDX21 acts as a sensor and mediator of transcription during nucleotide stress.


Subject(s)
DEAD-box RNA Helicases/genetics , Melanocytes/metabolism , Neural Crest/metabolism , Oxidoreductases Acting on CH-CH Group Donors/genetics , Receptors, Progesterone/genetics , Zebrafish Proteins/genetics , Animals , Cell Line, Tumor , DEAD-box RNA Helicases/metabolism , Dihydroorotate Dehydrogenase , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Humans , Leflunomide/pharmacology , Melanocytes/drug effects , Melanocytes/pathology , Neural Crest/drug effects , Neural Crest/growth & development , Nucleotides , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Progesterone/metabolism , Protein Binding , Receptors, Progesterone/metabolism , Signal Transduction , Stress, Physiological/genetics , Transcription Elongation, Genetic , Transcription Factors/genetics , Transcription Factors/metabolism , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolism
3.
Stem Cell Reports ; 1(5): 425-36, 2013.
Article in English | MEDLINE | ID: mdl-24286030

ABSTRACT

Deletion of caudal/cdx genes alters hox gene expression and causes defects in posterior tissues and hematopoiesis. Yet, the defects in hox gene expression only partially explain these phenotypes. To gain deeper insight into Cdx4 function, we performed chromatin immunoprecipitation sequencing (ChIP-seq) combined with gene-expression profiling in zebrafish, and identified the transcription factor spalt-like 4 (sall4) as a Cdx4 target. ChIP-seq revealed that Sall4 bound to its own gene locus and the cdx4 locus. Expression profiling showed that Cdx4 and Sall4 coregulate genes that initiate hematopoiesis, such as hox, scl, and lmo2. Combined cdx4/sall4 gene knockdown impaired erythropoiesis, and overexpression of the Cdx4 and Sall4 target genes scl and lmo2 together rescued the erythroid program. These findings suggest that auto- and cross-regulation of Cdx4 and Sall4 establish a stable molecular circuit in the mesoderm that facilitates the activation of the blood-specific program as development proceeds.


Subject(s)
Gene Expression Regulation, Developmental , Hematopoiesis , Homeodomain Proteins/metabolism , Mesoderm/metabolism , Transcription Factors/metabolism , Zebrafish Proteins/metabolism , Animals , Homeodomain Proteins/genetics , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism , Mesoderm/cytology , Transcription Factors/genetics , Zebrafish , Zebrafish Proteins/genetics
4.
Science ; 334(6053): 242-5, 2011 Oct 14.
Article in English | MEDLINE | ID: mdl-21998393

ABSTRACT

The 5'-leader of the HIV-1 genome regulates multiple functions during viral replication via mechanisms that have yet to be established. We developed a nuclear magnetic resonance approach that enabled direct detection of structural elements within the intact leader (712-nucleotide dimer) that are critical for genome packaging. Residues spanning the gag start codon (AUG) form a hairpin in the monomeric leader and base pair with residues of the unique-5' region (U5) in the dimer. U5:AUG formation promotes dimerization by displacing and exposing a dimer-promoting hairpin and enhances binding by the nucleocapsid (NC) protein, which is the cognate domain of the viral Gag polyprotein that directs packaging. Our findings support a packaging mechanism in which translation, dimerization, NC binding, and packaging are regulated by a common RNA structural switch.


Subject(s)
Genome, Viral , HIV-1/genetics , HIV-1/physiology , RNA, Viral/chemistry , RNA, Viral/genetics , Virus Assembly , 5' Untranslated Regions , Base Pairing , Binding Sites , Codon, Initiator , Dimerization , Genes, gag , Human Immunodeficiency Virus Proteins/metabolism , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , Nucleic Acid Conformation , Nucleocapsid Proteins/metabolism , Protein Binding , Protein Biosynthesis , gag Gene Products, Human Immunodeficiency Virus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...