Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Evol Biol ; 17(1): 197-207, 2004 Jan.
Article in English | MEDLINE | ID: mdl-15000662

ABSTRACT

Environmental variation in temperature can have dramatic effects on plant morphology, phenology, and fitness, and for this reason it is important to understand the evolutionary dynamics of phenotypic plasticity in response to temperature. We investigated constraints on the evolution of phenotypic plasticity in response to a temperature gradient in the model plant Arabidopsis thaliana by applying modern analytical tools to the classic data of Westerman & Lawrence (1970). We found significant evidence for two types of constraints. First, we detected numerous significant genetic correlations between plastic responses to temperature and the mean value of a trait across all environments, which differed qualitatively in pattern between the set of ecotypes and the set of mutant lines in the original sample. Secondly, we detected significant costs of flowering time plasticity in two of the three experimental environments, and a net pattern of selection against flowering time plasticity in the experiment overall. Thus, when explored with contemporary methods, the prescient work of Westerman & Lawrence (1970) provides new insights about evolutionary constraints on the evolution of plasticity.


Subject(s)
Arabidopsis/physiology , Biological Evolution , Flowers/physiology , Phenotype , Temperature , Arabidopsis/genetics , Selection, Genetic , Statistics as Topic , Time Factors
2.
Am J Bot ; 88(7): 1240-9, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11454624

ABSTRACT

The maternal photoperiod at the time of seed maturation can predict the seasonal conditions of newly dispersed seeds. We investigated the effects of maternal photoperiod on seasonal dormancy in Arabidopsis thaliana using a set of F6 recombinant inbred lines derived from a cross between individuals from two natural populations (Cal-0 and Tac-0) differing in cold requirements for germination. We grew 40 Cal × Tac lines in a long-day photoperiod (8 h of full spectrum light plus 8 h of low-fluence incandescent light) and a short-day photoperiod (8 h full spectrum light). We then exposed seeds from each family and maternal photoperiod to either a cold stratification treatment (4°C, 21 d) or no cold stratification. Both maternal photoperiod and progeny stratification influenced the percentage of seeds that germinated and the speed of germination. The short-day photoperiod caused increased responsiveness to stratification, with higher germination percentages and speeds in stratified seeds. Stratification influenced the expression of maternal photoperiod effects, such that short days increased germination percentage and speed in stratified seeds but inhibited germination in unstratified seeds. Families differed significantly in their plasticity to maternal photoperiod and stratification, but genetic variation for plasticity to maternal photoperiod was expressed only in unstratified seeds. Because the expression of maternal photoperiod effects and genetic variation for photoperiod effects depended on progeny stratification, the evolution of these maternal effects will depend on the seasonal environment experienced by progeny.

3.
Evolution ; 54(6): 1982-94, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11209775

ABSTRACT

Plants shaded by neighbors or overhead foliage experience both a reduction in the ratio of red to far red light (R:FR), a specific cue perceived by phytochrome, and reduced photosynthetically active radiation (PAR), an essential resource. We tested the adaptive value of plasticity to crowding and to the cue and resource components of foliage shade in the annual plant Arabidopsis thaliana by exposing 36 inbred families from four natural populations to four experimental treatments: (1) high density, full sun; (2) low density, full sun; (3) low density, neutral shade; and (4) low density, low R:FR-simulated foliage shade. Genotypic selection analysis within each treatment revealed strong environmental differences in selection on plastic life-history traits. We used specific contrasts to measure plasticity to density and foliage shade, to partition responses to foliage shade into phytochrome-mediated responses to the R:FR cue and responses to PAR, and to test whether plasticity was adaptive (i.e., in the same direction as selection in each environment). Contrary to expectation, we found no evidence for adaptive plasticity to density. However, we observed both adaptive and maladaptive responses to foliage shade. In general, phytochrome-mediated plasticity to the R:FR cue of foliage shade was adaptive and counteracted maladaptive growth responses to reduced PAR. These results support the prediction that active developmental responses to environmental cues are more likely to be adaptive than are passive resource-mediated responses. Multiple regression analysis detected a few costs of adaptive plasticity and adaptive homeostasis, but such costs were infrequent and their expression depended on the environment. Thus, costs of plasticity may occasionally constrain the evolution of adaptive responses to foliage shade in Arabidopsis, but this constraint may differ among environments and is far from ubiquitous.


Subject(s)
Adaptation, Physiological , Arabidopsis/genetics , Light , Evolution, Molecular , Homeostasis , Random Allocation , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...