Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 121(6): 1774-1788, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38433473

ABSTRACT

The biopharmaceutical industry is replacing fed-batch with perfusion processes to take advantage of reduced capital and operational costs due to the operation at high cell densities (HCD) and improved productivities. HCDs are achieved by cell retention and continuous medium exchange, which is often based on the cell-specific perfusion rate (CSPR). To obtain a cost-productive process the perfusion rate must be determined for each process individually. However, determining optimal operating conditions remain labor-intensive and time-consuming experiments, as investigations are performed in lab-scale perfusion bioreactors. Small-scale models such as microwell plates (MWPs) provide an option for screening multiple perfusion rates in parallel in a semi-perfusion mimic. This study investigated two perfusion rate strategies applied to the MWP platform operated in semi-perfusion. The CSPR-based perfusion rate strategy aimed to maintain multiple CSPR values throughout the cultivation and was compared to a cultivation with a perfusion rate of 1 RV d-1. The cellular performance was investigated with the dual aim (i) to achieve HCD, when inoculating at conventional and HCDs, and (ii) to maintain HCDs, when applying an additional manual cell bleed. With both perfusion rate strategies viable cell concentrations up to 50 × 106 cells mL-1 were achieved and comparable results for key metabolites and antibody product titers were obtained. Furthermore, the combined application of cell bleed and CSPR-based medium exchange was successfully shown with similar results for growth, metabolites, and productivities, respectively, while reducing the medium consumption by up to 50% for HCD cultivations.


Subject(s)
Bioreactors , Cricetulus , CHO Cells , Animals , Perfusion/methods , Perfusion/instrumentation , Cell Culture Techniques/methods , Cell Culture Techniques/instrumentation , High-Throughput Screening Assays/methods , Cell Count , Batch Cell Culture Techniques/methods , Batch Cell Culture Techniques/instrumentation
2.
Biotechnol Bioeng ; 121(6): 1759-1773, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38393309

ABSTRACT

The promise of continuous processing to increase yields and improve product quality of biopharmaceuticals while decreasing the manufacturing footprint is transformative. Developing and optimizing perfusion operations requires screening various parameters, which is expensive and time-consuming when using benchtop bioreactors. Scale-down models (SDMs) are the most feasible option for high-throughput data generation and condition screening. However, new SDMs mimicking perfusion are required, enabling experiments to be run in parallel. In this study, a method using microwell plates (MWP) operating in semi-perfusion mode with an implemented cell bleed step is presented. A CHO cell line was cultivated in a 24-well MWP (Vw = 1.2 mL) and grown at four high cell density (HCD) setpoints. Quasi steady-state condition was obtained by manually performing cell bleeds followed by a total medium exchange after centrifugation. Further, two HCD setpoints were scaled up (VW = 30 mL), comparing a squared six-well deepwell plate (DWP) to shake flasks (SF). This evaluation showed comparable results between systems (DWP vs. SF) and scales (MWP vs. DWP + SF). The results show that the well-plate-based methods are suitable to perform HCD and quasi steady-state cultivations providing a robust solution to industrially relevant challenges such as cell clone and media selection.


Subject(s)
Cricetulus , High-Throughput Screening Assays , CHO Cells , Animals , High-Throughput Screening Assays/methods , Bioreactors , Cell Culture Techniques/methods , Cell Culture Techniques/instrumentation , Cell Count
3.
Biotechnol Bioeng ; 120(9): 2639-2657, 2023 09.
Article in English | MEDLINE | ID: mdl-36779302

ABSTRACT

We present a proof-of-concept study for production of a recombinant vesicular stomatitis virus (rVSV)-based fusogenic oncolytic virus (OV), rVSV-Newcastle disease virus (NDV), at high cell densities (HCD). Based on comprehensive experiments in 1 L stirred tank reactors (STRs) in batch mode, first optimization studies at HCD were carried out in semi-perfusion in small-scale cultivations using shake flasks. Further, a perfusion process was established using an acoustic settler for cell retention. Growth, production yields, and process-related impurities were evaluated for three candidate cell lines (AGE1.CR, BHK-21, HEK293SF)infected at densities ranging from 15 to 30 × 106 cells/mL. The acoustic settler allowed continuous harvesting of rVSV-NDV with high cell retention efficiencies (above 97%) and infectious virus titers (up to 2.4 × 109 TCID50 /mL), more than 4-100 times higher than for optimized batch processes. No decrease in cell-specific virus yield (CSVY) was observed at HCD, regardless of the cell substrate. Taking into account the accumulated number of virions both from the harvest and bioreactor, a 15-30 fold increased volumetric virus productivity for AGE1.CR and HEK293SF was obtained compared to batch processes performed at the same scale. In contrast to all previous findings, formation of syncytia was observed at HCD for the suspension cells BHK 21 and HEK293SF. Oncolytic potency was not affected compared to production in batch mode. Overall, our study describes promising options for the establishment of perfusion processes for efficient large-scale manufacturing of fusogenic rVSV-NDV at HCD for all three candidate cell lines.


Subject(s)
Oncolytic Viruses , Animals , Oncolytic Viruses/genetics , Cell Culture Techniques , Bioreactors , Cell Line , Vesiculovirus/genetics , Virus Cultivation
SELECTION OF CITATIONS
SEARCH DETAIL
...