Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Theor Biol ; 540: 110985, 2022 05 07.
Article in English | MEDLINE | ID: mdl-34953868

ABSTRACT

This paper explores the genotype-phenotype relationship. It outlines conditions under which the dependence of a quantitative trait on the genome might be predictable, based on measurement of a limited subset of genotypes. It uses the theory of real-valued Boolean functions in a systematic way to translate trait data into the Fourier domain. Important trait features, such as the roughness of the trait landscape or the modularity of a trait have a simple Fourier interpretation. Ruggedness at a gene location corresponds to high sensitivity to mutation, while a modular organization of gene activity reduces such sensitivity. Traits where rugged loci are rare will naturally compress gene data in the Fourier domain, leading to a sparse representation of trait data, concentrated in identifiable, low-level coefficients. This Fourier representation of a trait organizes epistasis in a form which is isometric to the trait data. As Fourier matrices are known to be maximally incoherent with the standard basis, this permits employing compressive sensing techniques to work from data sets that are relatively small-sometimes even of polynomial size-compared to the exponentially large sets of possible genomes. This theory provides a theoretical underpinning for systematic use of Boolean function machinery to dissect the dependency of a trait on the genome and environment.


Subject(s)
Algorithms , Genome , Fourier Analysis , Genotype , Models, Genetic , Phenotype
2.
Proc Natl Acad Sci U S A ; 105(50): 19690-5, 2008 Dec 16.
Article in English | MEDLINE | ID: mdl-19066221

ABSTRACT

The nerve fiber layer of the human retina is made up of the retinal segments of ganglion cell axons. Its geometry can be described mathematically as a fibration of a 2D domain: a partition of a certain region into smooth curves. Here, we present a simple family of curves that closely models the observed geometry of the nerve fiber layer. For each retina, the pattern depends on 2 parameters, A and B: A computer program determines A and B for a given retina and the theory matches the retina with a standard deviation of approximately 6-8 degrees . These particular curves turn out to be the curves that would be generated if the growing ganglion cell axon tip moved down a gradient toward a source of diffusible neuroattractant at the disk and away from a weaker macular diffusible repellant. Thus, this model provides morphological evidence that diffusible substances provide positional information to the embryonic ganglion cell axons in finding their way to the optic nerve head.


Subject(s)
Axons , Models, Neurological , Optic Nerve/anatomy & histology , Retina/anatomy & histology , Humans , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...