Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nanoscale ; 7(48): 20442-50, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26584058

ABSTRACT

In this study we report in-plane nanotracks produced by molecular-beam-epitaxy (MBE) exhibiting lateral self-assembly and unusual periodic and out-of-phase height variations across their growth axes. The nanotracks are synthesized using bismuth segregation on the GaAsBi epitaxial surface, which results in metallic liquid droplets capable of catalyzing GaAsBi nanotrack growth via the vapor-liquid-solid (VLS) mechanism. A detailed examination of the nanotrack morphologies is carried out employing a combination of scanning electron and atomic force microscopy and, based on the findings, a geometric model of nanotrack growth during MBE is developed. Our results indicate diffusion and shadowing effects play significant roles in defining the interesting nanotrack shape. The unique periodicity of our lateral nanotracks originates from a rotating nucleation "hot spot" at the edge of the liquid-solid interface, a feature caused by the relative periodic circling of the non-normal ion beam flux incident on the sample surface, inside the MBE chamber. We point out that such a concept is divergent from current models of crawling mode growth kinetics and conclude that these effects may be utilized in the design and assembly of planar nanostructures with controlled non-monotonous structure.

2.
Opt Express ; 22(10): 11680-9, 2014 May 19.
Article in English | MEDLINE | ID: mdl-24921290

ABSTRACT

We report room-temperature Raman scattering studies of nominally undoped (100) GaAs1−xBix epitaxial layers exhibiting Bi-induced (p-type) longitudinal-optical-plasmon-coupled (LOPC) modes for 0.018 ≤ x ≤ 0.048. Redshifts in the GaAs-like optical modes due to alloying are evaluated and are paralleled by strong damping of the LOPC. The relative integrated Raman intensities of LO(Γ) and LOPC ALO/ALOPC are characteristic of heavily doped p-GaAs, with a remarkable near total screening of the LO(Γ) phonon (ALO/ALOPC → 0) for larger Bi concentrations. A method of spectral analysis is set out which yields estimates of hole concentrations in excess of 5×1017cm−3 and correlates with the Bi molar fraction. These findings are in general agreement with recent electrical transport measurements performed on the alloy, and while the absolute size of the hole concentrations differ, likely origins for the discrepancy are discussed. We conclude that the damped LO-phonon-hole-plasmon coupling phenomena plays a dominant role in Raman scattering from unpassivated nominally undoped GaAsBi.

3.
Nanotechnology ; 25(3): 035702, 2014 Jan 24.
Article in English | MEDLINE | ID: mdl-24346504

ABSTRACT

The structural and optical properties of GaAs1-xBix quantum wells (QWs) symmetrically clad by GaAs barriers with and without additional confining AlGaAs layers are studied. It is shown that a GaAs/GaAs1-xBix/GaAs QW with x ~ 4% and well width of ~ 4 nm grown by molecular beam epitaxy demonstrates efficient photoluminescence (PL) that becomes significantly more thermally stable when a cladding AlGaAs layer is added to the QW structure. The PL behavior for temperatures between 10 and 300 K and for excitation intensities varying by seven orders of magnitude can be well described in terms of the dynamics of excitons including carrier capture in the QW layer, thermal emission and diffusion into the cladding barriers. Understanding the role of these processes in the luminescence of dilute GaAs1-xBix QW structures facilitates the creation of highly efficient devices with reduced thermal sensitivity and low threshold current.

4.
Nanotechnology ; 24(7): 075701, 2013 Feb 22.
Article in English | MEDLINE | ID: mdl-23358560

ABSTRACT

We report on an InAs quantum dot (QD) hybrid structure with a top surface QD layer coupled to two buried QD layers that is highly sensitive to surface passivation. After 180 min of passivation, the photoluminescence (PL) peak of the surface QDs shifts from 1545 to 1275 nm while its intensity decreases by one order of magnitude. Time-resolved PL reveals a significant decrease of carrier tunneling between the QD layers because of the surface state modification by chemical treatment. A simple model with rate equations is used to explain the observed optical performance. Our results show that the optical performance of this hybrid structure is very sensitive to the surface environment, making it a potential candidate for sensing applications.

5.
Nanotechnology ; 22(37): 375703, 2011 Sep 16.
Article in English | MEDLINE | ID: mdl-21852736

ABSTRACT

A Ga(AsBi) quantum well (QW) with Bi content reaching 6% and well width of 11 nm embedded in GaAs is grown by molecular beam epitaxy at low temperature and studied by means of high-resolution x-ray diffraction, photoluminescence (PL), and time-resolved PL. It is shown that for this growth regime, the QW is coherently strained to the substrate with a low dislocation density. The low temperature PL demonstrates a comparatively narrow excitonic linewidth of ∼ 40 meV. For high excitation density distinct QW excited states evolve in the emission spectra. The origins of peculiar PL dependences on temperature and excitation density are interpreted in terms of intra-well optical transitions.

6.
Nano Lett ; 10(8): 3052-6, 2010 Aug 11.
Article in English | MEDLINE | ID: mdl-20698619

ABSTRACT

We report the growth of InAs(1-x)Sb(x) self-assembled quantum dots (QDs) on GaAs (100) by molecular beam epitaxy. The optical properties of the QDs are investigated by photoluminescence (PL) and time-resolved photoluminescence (TRPL). A type I to type II band alignment transition is demonstrated by both power-dependent PL and TRPL in InAs(1-x)Sb(x) QD samples with increased Sb beam flux. Results are compared to an eight-band strain-dependent k x p model incorporating detailed QD structure and alloy composition. The calculations show that the conduction band offset of InAs(1-x)Sb(x)/GaAs can be continuously tuned from 0 to 500 meV and a flat conduction band alignment exists when 60% Sb is incorporated into the QDs. Our study offers the possibility of tailoring the band structure of GaAs based InAsSb QDs and opens up new means for device applications.

7.
Phys Rev Lett ; 104(8): 086401, 2010 Feb 26.
Article in English | MEDLINE | ID: mdl-20366953

ABSTRACT

We report a comprehensive discussion of quantum interference effects due to the finite structure of neutral excitons in quantum rings and their first experimental corroboration observed in the optical recombinations. The signatures of built-in electric fields and temperature on quantum interference are demonstrated by theoretical models that describe the modulation of the interference pattern and confirmed by complementary experimental procedures.

8.
Nanotechnology ; 20(6): 065401, 2009 Feb 11.
Article in English | MEDLINE | ID: mdl-19417384

ABSTRACT

A comprehensive investigation of the optical properties of InAs/InP(001) quantum wires (QWrs) and their parent quantum well system formed by the deposition of 4 ML (monolayers) of InAs on InP is carried out by means of temperature dependent photoluminescence (PL) and Fourier transform infrared spectroscopy. Unusual two-branch switching of the excitonic PL band maxima is revealed in the temperature dependence for both wires and wells. This is interpreted in terms of the thermal activation of excitonic ground states of the confined nanostructures. Strong modification of the absorbance line shape leading to the appearance of flat spectral regions in the room temperature spectrum of a QWr sample is interpreted in terms of thermally induced change of the dimensionality: from 1D to anisotropic 2D. This change of dimensionality is detected also in the polarized absorbance measurements through the disappearance or significant reduction of the polarization anisotropy in the regions of the hh1-e1 (hh: heavy hole; e: electron) and lh1-e1 (lh: light hole) transitions in QWrs.

9.
J Nanosci Nanotechnol ; 9(5): 3320-4, 2009 May.
Article in English | MEDLINE | ID: mdl-19453010

ABSTRACT

GaAs nano-mounds formed by droplet epitaxy are used as templates for growth of self-assembled InAs quantum dot clusters (QDCs). These QDCs are found to contain an average of thirteen dots per cluster, of which there are two families of different sized quantum dots. Excitation intensity-dependent photoluminescence (PL) demonstrates that there is no lateral coupling between the two different size quantum dots. Lateral transfer of carriers is observed between different size quantum dots due to thermal activation as seen in their different temperature-dependent optical behaviors.

10.
Nanotechnology ; 19(43): 435710, 2008 Oct 29.
Article in English | MEDLINE | ID: mdl-21832714

ABSTRACT

InAs quantum dots embedded in InGaAs quantum well (DWELL: dots-in-the-well) structures grown on nanopatterned GaAs pyramids and planar GaAs(001) surface are comparatively investigated. Photoluminescence (PL) measurements demonstrate that the DWELL structure grown on the GaAs pyramids exhibits a broad quantum well PL band (full width at half-maximum ∼ 90 meV) and a higher quantum dot emission efficiency than the DWELL structure grown on the planar GaAs(001) substrate. These properties are attributed to the InGaAs quantum well with distributed thickness profile on the faceted GaAs pyramids, which introduces a tapered energy band structure and enhances carrier capture into the quantum dots.

11.
Nanotechnology ; 19(50): 505605, 2008 Dec 17.
Article in English | MEDLINE | ID: mdl-19942777

ABSTRACT

Lateral ordering of InGaAs quantum dots on the GaAs (001) surface has been achieved in earlier reports, resembling an anisotropic pattern. In this work, we present a method of breaking the anisotropy of ordered quantum dots (QDs) by changing the growth environment. We show experimentally that using As(2) molecules instead of As(4) as a background flux is efficient in controlling the diffusion of distant Ga adatoms to make it possible to produce isotropic ordering of InGaAs QDs over GaAs (001). The control of the lateral ordering of QDs under As(2) flux has enabled us to improve their optical properties. Our results are consistent with reported experimental and theoretical data for structure and diffusion on the GaAs surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...