Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 123(5): 1090-1098, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30604975

ABSTRACT

Anisotropic circular dichroism (ACD) spectroscopy of macroscopically aligned molecules reveals additional information about their excited states that is lost in the CD of randomly oriented solutions. ACD spectra of light-harvesting complex II (LHCII)-the main peripheral antenna of photosystem II in plants-in oriented lipid bilayers were recorded from the far-UV to the visible wavelength region. ACD spectra show a drastically enhanced magnitude and level of detail compared to the isotropic CD spectra, resolving a greater number of bands and weak optical transitions. Exciton calculations show that the spectral features in the chlorophyll Q y region are well-reproduced by an existing Hamiltonian for LHCII, providing further evidence for the identity of energy sinks at chlorophylls a603 and a610 in the stromal layer and chlorophylls a604 and a613 in the luminal layer. We propose ACD spectroscopy to be a valuable tool linking the three-dimensional structure and the photophysical properties of pigment-protein complexes.

2.
Proc Natl Acad Sci U S A ; 114(35): 9481-9486, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28808031

ABSTRACT

In this paper we propose an energy dissipation mechanism that is completely reliant on changes in the aggregation state of the phycobilisome light-harvesting antenna components. All photosynthetic organisms regulate the efficiency of excitation energy transfer (EET) to fit light energy supply to biochemical demands. Not many do this to the extent required of desert crust cyanobacteria. Following predawn dew deposition, they harvest light energy with maximum efficiency until desiccating in the early morning hours. In the desiccated state, absorbed energy is completely quenched. Time and spectrally resolved fluorescence emission measurements of the desiccated desert crust Leptolyngbya ohadii strain identified (i) reduced EET between phycobilisome components, (ii) shorter fluorescence lifetimes, and (iii) red shift in the emission spectra, compared with the hydrated state. These changes coincide with a loss of the ordered phycobilisome structure, evident from small-angle neutron and X-ray scattering and cryo-transmission electron microscopy data. Based on these observations we propose a model where in the hydrated state the organized rod structure of the phycobilisome supports directional EET to reaction centers with minimal losses due to thermal dissipation. In the desiccated state this structure is lost, giving way to more random aggregates. The resulting EET path will exhibit increased coupling to the environment and enhanced quenching.


Subject(s)
Cyanobacteria/physiology , Desert Climate , Soil Microbiology , Light-Harvesting Protein Complexes , Photosynthesis/physiology , Phycobilisomes/physiology
3.
Nat Commun ; 7: 12454, 2016 08 18.
Article in English | MEDLINE | ID: mdl-27534696

ABSTRACT

Photosynthetic antenna systems enable organisms harvesting light and transfer the energy to the photosynthetic reaction centre, where the conversion to chemical energy takes place. One of the most complex antenna systems, the chlorosome, found in the photosynthetic green sulfur bacterium Chlorobaculum (Cba.) tepidum contains a baseplate, which is a scaffolding super-structure, formed by the protein CsmA and bacteriochlorophyll a. Here we present the first high-resolution structure of the CsmA baseplate using intact fully functional, light-harvesting organelles from Cba. tepidum, following a hybrid approach combining five complementary methods: solid-state NMR spectroscopy, cryo-electron microscopy, isotropic and anisotropic circular dichroism and linear dichroism. The structure calculation was facilitated through development of new software, GASyCS for efficient geometry optimization of highly symmetric oligomeric structures. We show that the baseplate is composed of rods of repeated dimers of the strongly amphipathic CsmA with pigments sandwiched within the dimer at the hydrophobic side of the helix.


Subject(s)
Chlorobi/ultrastructure , Light-Harvesting Protein Complexes/ultrastructure , Anisotropy , Chlorobi/metabolism , Circular Dichroism , Cryoelectron Microscopy , Imaging, Three-Dimensional , Light-Harvesting Protein Complexes/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Organelles/metabolism , Organelles/ultrastructure , Reproducibility of Results
4.
Nanoscale Res Lett ; 10(1): 458, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26619890

ABSTRACT

Basic principles of structural and functional requirements of photosynthetic energy conversion in hierarchically organized machineries are reviewed. Blueprints of photosynthesis, the energetic basis of virtually all life on Earth, can serve the basis for constructing artificial light energy-converting molecular devices. In photosynthetic organisms, the conversion of light energy into chemical energy takes places in highly organized fine-tunable systems with structural and functional hierarchy. The incident photons are absorbed by light-harvesting complexes, which funnel the excitation energy into reaction centre (RC) protein complexes containing redox-active chlorophyll molecules; the primary charge separations in the RCs are followed by vectorial transport of charges (electrons and protons) in the photosynthetic membrane. RCs possess properties that make their use in solar energy-converting and integrated optoelectronic systems feasible. Therefore, there is a large interest in many laboratories and in the industry toward their use in molecular devices. RCs have been bound to different carrier matrices, with their photophysical and photochemical activities largely retained in the nano-systems and with electronic connection to conducting surfaces. We show examples of RCs bound to carbon-based materials (functionalized and non-functionalized single- and multiwalled carbon nanotubes), transitional metal oxides (ITO) and conducting polymers and porous silicon and characterize their photochemical activities. Recently, we adapted several physical and chemical methods for binding RCs to different nanomaterials. It is generally found that the P(+)(QAQB)(-) charge pair, which is formed after single saturating light excitation is stabilized after the attachment of the RCs to the nanostructures, which is followed by slow reorganization of the protein structure. Measuring the electric conductivity in a direct contact mode or in electrochemical cell indicates that there is an electronic interaction between the protein and the inorganic carrier matrices. This can be a basis of sensing element of bio-hybrid device for biosensor and/or optoelectronic applications.

5.
Photochem Photobiol ; 91(6): 1368-75, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26277346

ABSTRACT

Photothermal characteristics and light-induced structural (volume) changes of carotenoid-containing and noncontaining photosynthetic reaction centers (RCs) were investigated by wide frequency band hydrophone. We found that the presence of carotenoid either does not play considerable role in the light-induced conformational movements, or these rearrangements are too slow for inducing a photoacoustic (PA) signal. The kinetic component with a few tens of microseconds, exhibited by the carotenoid-less RCs, appears to be similar to that of triplet state lifetimes, identified by other methods. The binding of terbutryn to the acceptor side is shown to affect the dynamics of the RC. Our results do not confirm large displacements or volume changes induced by the charge movements and by the charge relaxation processes in the RCs in few hundreds of microseconds time scale that accompanies the electron transfer between the primary and secondary electron acceptor quinones.


Subject(s)
Carotenoids/chemistry , Light , Photosynthetic Reaction Center Complex Proteins/chemistry , Temperature , Triazines/chemistry
6.
J Biol Chem ; 290(8): 4877-4886, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25525277

ABSTRACT

Extraction of plant light-harvesting complex II (LHCII) from the native thylakoid membrane or from aggregates by the use of surfactants brings about significant changes in the excitonic circular dichroism (CD) spectrum and fluorescence quantum yield. To elucidate the cause of these changes, e.g. trimer-trimer contacts or surfactant-induced structural perturbations, we compared the CD spectra and fluorescence kinetics of LHCII aggregates, artificial and native LHCII-lipid membranes, and LHCII solubilized in different detergents or trapped in polymer gel. By this means we were able to identify CD spectral changes specific to LHCII-LHCII interactions, at (-)-437 and (+)-484 nm, and changes specific to the interaction with the detergent n-dodecyl-ß-maltoside (ß-DM) or membrane lipids, at (+)-447 and (-)-494 nm. The latter change is attributed to the conformational change of the LHCII-bound carotenoid neoxanthin, by analyzing the CD spectra of neoxanthin-deficient plant thylakoid membranes. The neoxanthin-specific band at (-)-494 nm was not pronounced in LHCII in detergent-free gels or solubilized in the α isomer of DM but was present when LHCII was reconstituted in membranes composed of phosphatidylcholine or plant thylakoid lipids, indicating that the conformation of neoxanthin is sensitive to the molecular environment. Neither the aggregation-specific CD bands, nor the surfactant-specific bands were positively associated with the onset of fluorescence quenching, which could be triggered without invoking such spectral changes. Significant quenching was not active in reconstituted LHCII proteoliposomes, whereas a high degree of energetic connectivity, depending on the lipid:protein ratio, in these membranes allows for efficient light harvesting.


Subject(s)
Light-Harvesting Protein Complexes/chemistry , Membrane Lipids/chemistry , Pisum sativum/enzymology , Thylakoids/enzymology , Xanthophylls/chemistry , Circular Dichroism
7.
Curr Protein Pept Sci ; 15(4): 363-73, 2014.
Article in English | MEDLINE | ID: mdl-24678673

ABSTRACT

Photosynthetic reaction centres are membrane-spanning proteins, found in several classes of autotroph organisms, where a photoinduced charge separation and stabilization takes place with a quantum efficiency close to unity. The protein remains stable and fully functional also when extracted and purified in detergents thereby biotechnological applications are possible, for example, assembling it in nano-structures or in optoelectronic systems. Several types of bionanocomposite materials have been assembled by using reaction centres and different carrier matrices for different purposes in the field of light energy conversion (e.g., photovoltaics) or biosensing (e.g., for specific detection of pesticides). In this review we will summarize the current status of knowledge, the kinds of applications available and the difficulties to be overcome in the different applications. We will also show possible research directions for the close future in this specific field.


Subject(s)
Nanotechnology , Photosynthesis
8.
J Bioenerg Biomembr ; 44(3): 373-84, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22528392

ABSTRACT

Photosynthetic reaction center (RC) is the minimal nanoscopic photoconverter in the photosynthetic membrane that catalyzes the conversion of solar light to energy readily usable for the metabolism of the living organisms. After electronic excitation the energy of light is converted into chemical potential by the generation of a charge separated state accompanied by intraprotein and ultimately transmembrane proton movements. We designed a system which fulfills the minimum structural and functional requirements to investigate the physico/chemical conditions of the processes: RCs were reconstituted in closed lipid vesicles made of selected lipids entrapping a pH sensitive indicator, and electron donors (cytochrome c2 and K4[Fe(CN)6]) and acceptors (decylubiquinone) were added to sustain the photocycle. Thanks to the low proton permeability of our preparations, we could show the formation of a transmembrane proton gradient under illumination and low buffering conditions directly by measuring proton-related signals simultaneously inside and outside the vesicles. The effect of selected ionophores such as gramicidin, nigericin and valinomycin was used to gain more information on the transmembrane proton gradient driven by the RC photochemistry.


Subject(s)
Liposomes/chemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Cell Culture Techniques , Ionophores/chemistry , Light , Microscopy, Fluorescence , Protons , Spectrophotometry, Ultraviolet
9.
J Biol Chem ; 285(39): 29851-6, 2010 Sep 24.
Article in English | MEDLINE | ID: mdl-20663887

ABSTRACT

The D1 protein (PsbA) of photosystem II (PSII) from Thermosynechococcus elongatus is encoded by a psbA gene family that is typical of cyanobacteria. Although the transcription of these three genes has been studied previously (Kós, P. B., Deák, Z., Cheregi, O., and Vass, I. (2008) Biochim. Biophys. Acta 1777, 74-83), the protein quantification had not been possible due to the high sequence identity between the three PsbA copies. The successful establishment of a method to quantify the PsbA proteins on the basis of reverse phase-LC-electrospray mass ionization-MS/MS (RP-LC-ESI-MS/MS) enables an accurate comparison of transcript and protein level for the first time ever. Upon high light incubation, about 70% PsbA3 could be detected, which closely corresponds to the transcript level. It was impossible to detect any PsbA2 under all tested conditions. The construction of knock-out mutants enabled for the first time a detailed characterization of both whole cells and also isolated PSII complexes. PSII complexes of the ΔpsbA1/psbA2 mutant contained only copy PsbA3, whereas only PsbA1 could be detected in PSII complexes from the ΔpsbA3 mutant. In whole cells as well as in isolated complexes, a shift of the free energy between the redox pairs in the PsbA3 complexes in comparison with PsbA1 could be detected by thermoluminescence and delayed fluorescence measurements. This change is assigned to a shift of the redox potential of pheophytin toward more positive values. Coincidentally, no differences in the Q(A)-Q(B) electron transfer could be observed in flash-induced fluorescence decay or prompt fluorescence measurements. In conclusion, PsbA3 complexes yield a better protection against photoinhibition due to a higher probability of the harmless dissipation of excess energy.


Subject(s)
Bacterial Proteins/metabolism , Cyanobacteria/metabolism , Photosystem II Protein Complex/metabolism , Bacterial Proteins/genetics , Cyanobacteria/genetics , Electron Transport/physiology , Fluorescence , Gene Dosage , Gene Knockdown Techniques , Photosystem II Protein Complex/genetics
10.
Eur Biophys J ; 37(7): 1167-74, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18330555

ABSTRACT

Photosynthetic reaction center (RC) pigment protein complex converts the free energy of light into chemical potential of charge pairs with extremely high efficiency. A transient phase in the absorption spectrum in the sub-millisecond time scale is expected to be especially important to examine the conformational gating model of the Q(A)Q(B) to Q(A)Q(B) (here Q(A )and Q(B) are the primary and secondary quinone type electron acceptors, respectively) electron transport. Essential kinetic components at few tens of microseconds scale and at around 200 microseconds have been suggested. We investigated the conformation change of RCs using heterodyne detection of the laser-induced transient grating method. An about 25 microseconds dynamics was observed, which coincides with the one described by the conformational gating model and possibly related to the nonadiabatic intrinsic Q(A)Q(B) to Q(A)Q(B) electron transport. The relative intensity of this component decreased with increasing quinone concentration indicating an initial (P+Q(A))1 or a relaxed (P+Q(A))2 conformational substate. We did not find the decay component at few hundreds of microseconds time scale indicating that there is no large displacement in the RC structure if Q(B) is present. The diffusion coefficient of the RC/LDAO detergent micelles calculated from the kinetic component was D = 3.8 x 10(-11 ) m2/s that agrees fairly well with the number estimated from the Einstein-Stokes relationship, and relates to a hydrodynamic diameter of 11.4 nm of the RC in LDAO micellar solution.


Subject(s)
Lasers , Photosynthetic Reaction Center Complex Proteins/chemistry , Electron Transport , Kinetics , Photosynthetic Reaction Center Complex Proteins/metabolism , Protein Conformation , Protons , Spectrum Analysis
11.
Bioelectrochemistry ; 70(1): 18-22, 2007 Jan.
Article in English | MEDLINE | ID: mdl-16713374

ABSTRACT

The thermodynamics and kinetics of light-induced electron transfer in bacterial photosynthetic RCs are sensitive to physiologically important lipids (phosphatidylcholine, cardiolipin and phosphatidylglycerol) in the environment. The analysis of the temperature-dependence of the rate of the P(+)Q(A)(-)Q(B)-->P(+)Q(A)Q(B)(-) interquinone electron transfer revealed high enthalpy change of activation in zwitterionic or neutral micelles and vesicles and low enthalpy change of activation in vesicles constituted of negatively charged phospholipids. The entropy change of activation was compensated by the changes of enthalpy, thus the free energy change of activation ( approximately 500 meV) did not show large variation in vesicles of different lipids.


Subject(s)
Benzoquinones/chemistry , Cardiolipins/chemistry , Entropy , Phosphatidylcholines/chemistry , Phosphatidylglycerols/chemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Cardiolipins/metabolism , Electron Transport , Phosphatidylcholines/metabolism , Phosphatidylglycerols/metabolism , Photosynthetic Reaction Center Complex Proteins/metabolism , Rhodobacter sphaeroides/chemistry , Rhodobacter sphaeroides/metabolism
12.
J Phys Chem B ; 110(43): 21473-9, 2006 Nov 02.
Article in English | MEDLINE | ID: mdl-17064097

ABSTRACT

The interaction between single-walled carbon nanotubes and photosynthetic reaction centers purified from purple bacterium Rhodobacter sphaeroides R-26 has been investigated. Atomic force microscopy studies provide evidence that reaction center protein can be attached effectively to the nanotubes. The typical diameter of the nanotube is 1-4 nm and 15 +/- 2 nm without and with the reaction centers, respectively. Light-induced absorption change measurements indicate the stabilization of the P+(Q(A)Q(B))- charge pair, which is formed after single saturating light excitation after the attachment to nanotubes. The separation of light-induced charges is followed by slow reorganization of the protein structure. The stabilization effect of light-initiated charges by the carbon nanotubes opens a possible direction of several applications, the most promising being in energy conversion and storage devices.


Subject(s)
Nanotubes, Carbon/chemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Rhodobacter sphaeroides/metabolism , Electrochemistry , Kinetics , Photosynthetic Reaction Center Complex Proteins/metabolism , Protein Binding , Rhodobacter sphaeroides/chemistry
13.
Biochemistry ; 43(40): 12913-23, 2004 Oct 12.
Article in English | MEDLINE | ID: mdl-15461464

ABSTRACT

The role of characteristic phospholipids of native membranes, phosphatidylcholine (PC), phosphatidylglycerol (PG), and cardiolipin (CL), was studied in the energetics of the acceptor quinone side in photosynthetic reaction centers of Rhodobacter sphaeroides. The rates of the first, k(AB)(1), and the second, k(AB)(2), electron transfer and that of the charge recombination, k(BP), the free energy levels of Q(A)(-)Q(B) and Q(A)Q(B)(-) states, and the changes of charge compensating protein relaxation were determined in RCs incorporated into artificial lipid bilayer membranes. In RCs embedded in the PC vesicle, k(AB)(1) and k(AB)(2) increased (from 3100 to 4100 s(-1) and from 740 to 3300 s(-1), respectively) and k(BP) decreased (from 0.77 to 0.39 s(-1)) compared to those measured in detergent at pH 7. In PG, k(AB)(1) and k(BP) decreased (to values of 710 and 0.26 s(-1), respectively), while k(AB)(2) increased to 1506 s(-1) at pH 7. The free energy between the Q(A)(-)Q(B) and Q(A)Q(B)(-) states decreased in PC and PG (DeltaG degrees (Q)A-(Q)B(-->)(Q)A(Q)B- = -76.9 and -88.5 meV, respectively) compared to that measured in detergent (-61.8 meV). The changes of the Q(A)/Q(A)(-) redox potential measured by delayed luminescence showed (1) a differential effect of lipids whether RC incorporated in micelles or vesicles, (2) an altered binding interaction between anionic lipids and RC, (3) a direct influence of PC and PG on the free energy levels of the primary and secondary quinones probably through the intraprotein hydrogen-bonding network, and (4) a larger increase of the Q(A)/Q(A)(-) free energy in PG than in PC both in detergent micelles and in single-component vesicles. On the basis of recent structural data, implications of the binding properties of phospholipids to RC and possible interactions between lipids and electron transfer components will be discussed.


Subject(s)
Phosphatidylcholines/metabolism , Phosphatidylglycerols/metabolism , Photosynthetic Reaction Center Complex Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/metabolism , Proteins/metabolism , Quinones/metabolism , Amino Acids/metabolism , Cytochromes/metabolism , Electron Transport , Kinetics , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Membranes, Artificial , Molecular Conformation , Quinones/chemistry , Rhodobacter sphaeroides/chemistry , Rhodobacter sphaeroides/metabolism , Spectrum Analysis , Thermodynamics , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...