Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Phys Chem Chem Phys ; 10(45): 6820-8, 2008 Dec 07.
Article in English | MEDLINE | ID: mdl-19015786

ABSTRACT

The light-driven intramolecular redox reaction of adenosine-5'-triphosphate-[P3-(1-(2-nitrophenyl)-ethyl)]ester (caged ATP) has been studied in frozen aqueous solution using time-resolved solid state NMR spectroscopy under continuous illumination conditions. Cleavage of the phosphate ester bond leads to 0.3, 1.36, and 6.06 ppm downfield shifts of the alpha-, beta-, and gamma-phosphorus resonances of caged ATP, respectively. The observed rate of ATP formation is 2.4 +/- 0.2 h(-1) at 245 K. The proton released in the reaction binds to the triphosphate moiety of the nascent ATP, causing the upfield shifts of the 31P resonances. Analyses of the reaction kinetics indicate that bond cleavage and proton release are two sequential processes in the solid state, suggesting that the 1-hydroxy,1-(2-nitrosophenyl)-ethyl carbocation intermediate is involved in the reaction. The beta-phosphate oxygen atom of ATP is protonated first, indicating its proximity to the reaction center, possibly within hydrogen bonding distance. The residual linewidth kinetics are interpreted in terms of chemical exchange processes, hydrogen bonding of the beta-phosphate oxygen atom and evolution of the hydrolytic equilibrium at the triphosphate moiety of the nascent ATP. Photoreaction of caged ATP in situ gives an opportunity to study structural kinetics and catalysis of ATP-dependent enzymes by NMR spectroscopy in rotating solids.


Subject(s)
Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/chemistry , Magnetic Resonance Spectroscopy , Oxidation-Reduction , Oxygen/chemistry , Photochemistry
2.
FEMS Microbiol Ecol ; 65(3): 425-33, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18616587

ABSTRACT

Nitrogen fixation (NF) potential was measured in more than 40 samples of soda solonchak soils with the pH of water extract between 9.5 and 11.0 collected in several locations of Central Asia and in Egypt, using the acetylene reduction method. NF was detected in most of the samples. Maximal rates were observed under microaerophilic-anaerobic conditions with glucose as a substrate. In most cases, the NF negatively correlated with salt content and alkalinity. Five enrichments at pH 10 under micro-oxic conditions with glucose resulted in stable haloalkaliphilic mixed cultures, with diazotrophic component(s) active up to 2.0-3.0 M total Na(+). The cultures were dominated by Gram-positive spore-forming bacteria. Molecular cloning of nifH genes demonstrated the presence of two phylogenetic lineages of diazotrophs in the enrichments affiliated with the low-GC Gram-positive bacteria (in rRNA groups 1 and 6 of bacilli and in Clostridiales). Isolation of pure cultures of haloalkaliphilic diazotrophs from micro-oxic enrichments yielded nine strains, comprising two phylogenetic lineages. Most of the isolates (eight) were affiliated with the aerotolerant fermentative haloalkaliphilic bacterium Amphibacillus tropicus and a single strain clustered with the obligately anaerobic haloalkaliphile Bacillus arseniciselenatis. Diazotrophy has never been recognized previously in these groups of Gram-positive bacteria. Overall, the results demonstrated the existence, in soda solonchak soils, of a novel group of free-living fermentative diazotrophic bacteria active at extremely haloalkaline conditions.


Subject(s)
Bacteria/isolation & purification , Nitrogen Fixation , Soil Microbiology , Bacteria/genetics , Bacteria/metabolism , Carbonates/metabolism , Culture Media , DNA, Bacterial/genetics , Electrophoresis, Gel, Pulsed-Field , Genes, Bacterial , Genes, rRNA , Hydrogen-Ion Concentration , Molecular Sequence Data , Oxidoreductases/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sodium Chloride/metabolism , Soil/analysis
3.
Proc Natl Acad Sci U S A ; 105(25): 8563-8, 2008 Jun 24.
Article in English | MEDLINE | ID: mdl-18562298

ABSTRACT

DNA ligase seals nicks in dsDNA using chemical energy of the phosphoanhydride bond in ATP or NAD(+) and assistance of a divalent metal cofactor Mg(2+). Molecular details of ligase catalysis are essential for understanding the mechanism of metal-promoted phosphoryl transfer reactions in the living cell responsible for a wide range of processes, e.g., DNA replication and transcription, signaling and differentiation, energy coupling and metabolism. Here we report a single-turnover (31)P solid-state NMR study of adenylyl transfer catalyzed by DNA ligase from bacteriophage T4. Formation of a high-energy covalent ligase-nucleotide complex is triggered in situ by the photo release of caged Mg(2+), and sequentially formed intermediates are monitored by NMR. Analyses of reaction kinetics and chemical-shift changes indicate that the pentacoordinated phosphorane intermediate builds up to 35% of the total reacting species after 4-5 h of reaction. This is direct experimental evidence of the associative nature of adenylyl transfer catalyzed by DNA ligase. NMR spectroscopy in rotating solids is introduced as an analytical tool for recording molecular movies of reaction processes. Presented work pioneers a promising direction in structural studies of biochemical transformations.


Subject(s)
Adenosine Triphosphate/chemistry , Bacteriophage T4/enzymology , DNA Ligases/chemistry , Catalysis , DNA Ligases/metabolism , Kinetics , Magnesium/chemistry , Magnesium/metabolism , Magnetic Resonance Spectroscopy , NAD/chemistry , NAD/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...