Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Neuroimage ; 287: 120512, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38199427

ABSTRACT

Neurovascular coupling (NVC), or the adjustment of blood flow in response to local increases in neuronal activity is a hallmark of healthy brain function, and the physiological foundation for functional magnetic resonance imaging (fMRI). However, it remains only partly understood due to the high complexity of the structure and function of the cerebrovascular network. Here we set out to understand NVC at the network level, i.e. map cerebrovascular network reactivity to activation of neighbouring neurons within a 500×500×500 µm3 cortical volume (∼30 high-resolution 3-nL fMRI voxels). Using 3D two-photon fluorescence microscopy data, we quantified blood volume and flow changes in the brain vessels in response to spatially targeted optogenetic activation of cortical pyramidal neurons. We registered the vessels in a series of image stacks acquired before and after stimulations and applied a deep learning pipeline to segment the microvascular network from each time frame acquired. We then performed image analysis to extract the microvascular graphs, and graph analysis to identify the branch order of each vessel in the network, enabling the stratification of vessels by their branch order, designating branches 1-3 as precapillary arterioles and branches 4+ as capillaries. Forty-five percent of all vessels showed significant calibre changes; with 85 % of responses being dilations. The largest absolute CBV change was in the capillaries; the smallest, in the venules. Capillary CBV change was also the largest fraction of the total CBV change, but normalized to the baseline volume, arterioles and precapillary arterioles showed the biggest relative CBV change. From linescans along arteriole-venule microvascular paths, we measured red blood cell velocities and hematocrit, allowing for estimation of pressure and local resistance along these paths. While diameter changes following neuronal activation gradually declined along the paths; the pressure drops from arterioles to venules increased despite decreasing resistance: blood flow thus increased more than local resistance decreases would predict. By leveraging functional volumetric imaging and high throughput deep learning-based analysis, our study revealed distinct hemodynamic responses across the vessel types comprising the microvascular network. Our findings underscore the need for large, dense sampling of brain vessels for characterization of neurovascular coupling at the network level in health and disease.


Subject(s)
Brain , Cerebrovascular Circulation , Humans , Cerebrovascular Circulation/physiology , Brain/physiology , Neurons/physiology , Arterioles/diagnostic imaging , Magnetic Resonance Imaging/methods
2.
Theranostics ; 11(16): 7685-7699, 2021.
Article in English | MEDLINE | ID: mdl-34335958

ABSTRACT

Rationale: Mild traumatic brain injury (mTBI), the most common type of brain trauma, frequently leads to chronic cognitive and neurobehavioral deficits. Intervening effectively is impeded by our poor understanding of its pathophysiological sequelae. Methods: To elucidate the long-term neurovascular sequelae of mTBI, we combined optogenetics, two-photon fluorescence microscopy, and intracortical electrophysiological recordings in mice to selectively stimulate peri-contusional neurons weeks following repeated closed-head injury and probe individual vessel's function and local neuronal reactivity. Results: Compared to sham-operated animals, mTBI mice showed doubled cortical venular speeds (115 ± 25%) and strongly elevated cortical venular reactivity (53 ± 17%). Concomitantly, the pericontusional neurons exhibited attenuated spontaneous activity (-57 ± 79%) and decreased reactivity (-47 ± 28%). Post-mortem immunofluorescence revealed signs of peri-contusional senescence and DNA damage, in the absence of neuronal loss or gliosis. Alteration of neuronal and vascular functioning was largely prevented by chronic, low dose, systemic administration of a GABA-A receptor inverse agonist (L-655,708), commencing 3 days following the third impact. Conclusions: Our findings indicate that repeated mTBI leads to dramatic changes in the neurovascular unit function and that attenuation of tonic inhibition can prevent these alterations. The sustained disruption of the neurovascular function may underlie the concussed brain's long-term susceptibility to injury, and calls for development of better functional assays as well as of neurovascularly targeted interventions.


Subject(s)
Brain Concussion/metabolism , Brain Concussion/physiopathology , Neurovascular Coupling/physiology , Animals , Brain/physiopathology , Disease Models, Animal , Female , Male , Mice , Mice, Inbred Strains , Microscopy, Fluorescence/methods , Neurons/physiology , Optogenetics/methods
3.
J Cereb Blood Flow Metab ; 41(10): 2756-2768, 2021 10.
Article in English | MEDLINE | ID: mdl-33969731

ABSTRACT

Ischemia is one of the most common causes of acquired brain injury. Central to its noxious sequelae are spreading depolarizations (SDs), waves of persistent depolarizations which start at the location of the flow obstruction and expand outwards leading to excitotoxic damage. The majority of acute stage of stroke studies to date have focused on the phenomenology of SDs and their association with brain damage. In the current work, we investigated the role of peri-injection zone pyramidal neurons in triggering SDs by optogenetic stimulation in an endothelin-1 rat model of focal ischemia. Our concurrent two photon fluorescence microscopy data and local field potential recordings indicated that a ≥ 60% drop in cortical arteriolar red blood cell velocity was associated with SDs at the ET-1 injection site. SDs were also observed in the peri-injection zone, which subsequently exhibited elevated neuronal activity in the low-frequency bands. Critically, SDs were triggered by low- but not high-frequency optogenetic stimulation of peri-injection zone pyramidal neurons. Our findings depict a complex etiology of SDs post focal ischemia and reveal that effects of neuronal modulation exhibit spectral and spatial selectivity.


Subject(s)
Cortical Spreading Depression/physiology , Endothelin-1/metabolism , Stroke/physiopathology , Animals , Disease Models, Animal , Rats
4.
Brain Res ; 1758: 147369, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33582120

ABSTRACT

Hypertension, including transient events, is a major risk factor for developing late-onset dementia and Alzheimer's disease (AD). Anti-hypertensive drugs facilitate restoration of normotension without amelioration of increased dementia risk suggesting that transient hypertensive insults cause irreversible damage. This study characterized the contribution of transient hypertension to sustained brain damage as a function of normal aging and AD. To model transient hypertension, we treated F344TgAD and non-transgenic littermate rats with L-NG-Nitroarginine methyl ester (L-NAME) for one month, ceased treatment and allowed for a month of normotensive recovery. We then examined the changes in the structure and function of the cerebrovasculature, integrity of white matter, and progression of AD pathology. As independent factors, both transient hypertension and AD compromised structural and functional integrity across the vascular bed, while combined effects of hypertension and AD yielded the largest deficits. Combined effects of transient hypertension and AD genotype resulted in loss of cortical myelin particularly in the cingulate cortex which is crucial for cognitive function. Increased cerebral amyloid angiopathy, a prominent pathology of AD, was detected after transient hypertension as were up- and down-regulation of proteins associated with cerebrovascular remodeling - osteopontin, ROCK1 and ROCK2, in F344TgAD rats even 30 days after restoration of normotension. In conclusion, transient hypertension caused permanent cerebrovasculature and brain parenchymal damage in both normal aging and AD. Our results corroborate human studies that have found close correlation between transient hypertension in midlife and white matter lesions later in life outlining vascular pathologies as pathological links to increased risk of dementia.


Subject(s)
Alzheimer Disease/complications , Brain/pathology , Cerebral Amyloid Angiopathy/etiology , Hypertension/complications , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Animals , Brain/physiopathology , Cerebral Amyloid Angiopathy/pathology , Disease Models, Animal , Female , Genotype , Humans , Male , Rats , Rats, Inbred F344 , Rats, Transgenic , White Matter/pathology , White Matter/physiopathology
5.
Brain Res ; 1754: 147233, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33412147

ABSTRACT

It is estimated that up to 1 in 3 healthy middle-aged adults will have had a covert stroke during their lifetime. Furthermore, post-stroke, survivors are more than twice as likely to develop dementia. In the present study, we aimed to model the impact of focal subclinical ischemia prior to the onset of AD pathogenesis in a preclinical model. We utilized endothelin-1 to induce ischemia in an iducible transgenic mouse model of Alzheimer's disease, APPsi:tTA, allowing for temporal control of APP gene expression. We induced the focal subclinical ischemic events in the absence of APP expression, thus prior to AD onset. T2 structural magnetic resonance imaging confirmed the volume and location of focal subclinical ischemic lesions to the medial prefrontal cortex. Following recovery from surgery and 7 weeks of APP expression, we found that two subclinical ischemic lesions resulted in a significant localized increase in amyloid load and in microglial activation proximal to the lesion. However, no differences were found in astrogliosis. A battery of behaviour tests was conducted, in which no significant differences were detected in activities of daily living and cognitive function between stroked and sham cohorts. Overall, our results demonstrated that APP expression was the sole driving force behind behavioural deficits. In conclusion, our results suggest that a history of two subclinical strokes prior to AD onset does not worsen early disease trajectory in a mouse model.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Cognitive Dysfunction/metabolism , Gliosis/metabolism , Stroke/pathology , Animals , Disease Models, Animal , Mice , Mice, Transgenic , Plaque, Amyloid/metabolism , Stroke/metabolism
6.
Neuroimage ; 222: 117269, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32818618

ABSTRACT

Physical activity has been correlated with a reduced risk of cognitive decline, including that associated with vascular dementia, mild cognitive impairment (MCI) and Alzheimer's disease (AD); recent literature suggests this may in part result from benefits to the cerebrovascular network. Using a transgenic (Tg) mouse model of AD, we evaluated the effect of running on cortical and hippocampal vascular morphology, cerebral amyloid angiopathy, amyloid plaque load, and spatial memory. TgCRND8 mice present with progressive amyloid pathology, advancing from the cortex to the hippocampus in a time-dependent manner. We postulated that the characteristic progression of pathology could lead to differential, time-dependent effects of physical activity on vascular morphology in these brain regions at 6 months of age. We used two-photon fluorescent microscopy and 3D vessel tracking to characterize vascular and amyloid pathology in sedentary TgCRND8 mice compared those who have a history of physical activity (unlimited access to a running wheel, from 3 to 6 months of age). In sedentary TgCRND8 mice, capillary density was found to be lower in the cortex and higher in the hippocampus compared to non-transgenic (nonTg) littermates. Capillary length, vessel branching, and non-capillary vessel tortuosity were also higher in the hippocampus of sedentary TgCRND8 compared to nonTg mice. Three months of voluntary running resulted in normalizing cortical and hippocampal microvascular morphology, with no significant difference between TgCRND8 and nonTg mice. The benefits of physical activity on cortical and hippocampal vasculature in 6-month old TgCRND8 mice were not paralleled by significant changes on parenchymal and cerebral amyloid pathology. Short-term spatial memory- as evaluated by performance in the Y-maze- was significantly improved in running compared to sedentary TgCRND8 mice. These results suggest that long-term voluntary running contributes to the maintenance of vascular morphology and spatial memory in TgCRND8 mice, even in the absence of an effect on amyloid pathology.


Subject(s)
Alzheimer Disease/pathology , Amyloidosis/pathology , Hippocampus/metabolism , Memory, Short-Term/physiology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Amyloidosis/physiopathology , Animals , Cognitive Dysfunction/pathology , Disease Models, Animal , Hippocampus/pathology , Mice, Transgenic , Plaque, Amyloid
7.
Hypertension ; 74(4): 1041-1051, 2019 10.
Article in English | MEDLINE | ID: mdl-31476904

ABSTRACT

Transient hypertension is a risk factor for Alzheimer disease (AD), but the effects of this interaction on brain vasculature are understudied. Addressing vascular pathology is a promising avenue to potentiate the efficacy of treatments for AD. We used arterial spin labeling magnetic resonance imaging to longitudinally assess brain vascular function and immunohistopathology to examine cerebrovascular remodeling and amyloid load. Hypertension was induced for 1 month by administration of l-NG-nitroarginine-methyl-ester in TgF344-AD rats at the prodromal stage. Following hypertension, nontransgenic rats showed transient cerebrovascular changes, whereas TgF344-AD animals exhibited sustained alterations in cerebrovascular function. Human umbilical cord perivascular cells in combination with scyllo-inositol, an inhibitor of Aß oligomerization, resulted in normalization of hippocampal vascular function and remodeling, in contrast to either treatment alone. Prodromal stage hypertension exacerbates latter AD pathology, and the combination of human umbilical cord perivascular cells with amyloid clearance promotes cerebrovascular functional recovery.


Subject(s)
Alzheimer Disease/physiopathology , Hypertension/physiopathology , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Brain/physiopathology , Disease Models, Animal , Hemodynamics/physiology , Hypertension/complications , Hypertension/therapy , Magnetic Resonance Imaging , Rats , Spin Labels
8.
Sci Rep ; 9(1): 5499, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30940849

ABSTRACT

Longitudinal studies using two-photon fluorescence microscopy (TPFM) are critical for facilitating cellular scale imaging of brain morphology and function. Studies have been conducted in the mouse due to their relatively higher transparency and long term patency of a chronic cranial window. Increasing availability of transgenic rat models, and the range of established behavioural paradigms, necessitates development of a chronic preparation for the rat. However, surgical craniotomies in the rat present challenges due to craniotomy closure by wound healing and diminished image quality due to inflammation, restricting most rat TPFM experiments to acute preparations. Long-term patency is enabled by employing sterile surgical technique, minimization of trauma with precise tissue handling during surgery, judicious selection of the size and placement of the craniotomy, diligent monitoring of animal physiology and support throughout the surgery, and modification of the home cage for long-term preservation of cranial implants. Immunohistochemical analysis employing the glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule-1 (Iba-1) showed activation and recruitment of astrocytes and microglia/macrophages directly inferior to the cranial window at one week after surgery, with more diffuse response in deeper cortical layers at two weeks, and amelioration around four weeks post craniotomy. TPFM was conducted up to 14 weeks post craniotomy, reaching cortical depths of 400 µm to 600 µm at most time-points. The rate of signal decay with increasing depth and maximum cortical depth attained had greater variation between individual rats at a single time-point than within a rat across time.


Subject(s)
Cerebral Cortex/diagnostic imaging , Craniotomy/instrumentation , Microscopy, Fluorescence, Multiphoton/instrumentation , Animals , Astrocytes/metabolism , Calcium-Binding Proteins/metabolism , Cerebral Cortex/metabolism , Glial Fibrillary Acidic Protein/metabolism , Intravital Microscopy , Male , Microfilament Proteins/metabolism , Microglia/metabolism , Prostheses and Implants , Rats , Wound Healing
9.
Neuroimage ; 192: 135-144, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30669007

ABSTRACT

The rapid growth in the use of optogenetics for neuroscience applications is largely driven by two important advantages: highly specific cellular targeting through genetic manipulations; and precise temporal control of neuronal activation via temporal modulation of the optical stimulation. The difference between the most commonly used stimulation modalities, namely diffused (i.e. synchronous) and focused (i.e. asynchronous) stimulation has not been described. Furthermore, full realization of optogenetics' potential is hindered by our incomplete understanding of the cellular and network level response to photoactivation. Here we address these gaps by examining the neuronal and cerebrovascular responses to focused and diffuse photostimulation of channelrhodopsin in the Thy1-ChR2 mouse. We presented the responses of photoactivation via 470-nm fiber optic illumination (diffuse) alongside 458-nm raster-scan (focused) stimulation of the barrel field. Local field potentials (LFP) assessment of intracerebral electrophysiology and two-photon fluorescence microscopy measurements of red blood cell (RBC) speed (vRBC) in cortical penetrating vessels revealed ∼40% larger LFP responses (p = 0.05) and twice as large cerebrovascular responses (p = 0.002) under focused vs. diffuse photostimulation (focused: 1.64 ±â€¯0.84 mV LFP amplitude and 75 ±â€¯48% increase in vRBC; diffuse: 1.14 ±â€¯0.75 mV LFP amplitude and 35 ±â€¯23% increase in vRBC). Compared to diffuse photostimulation, focused photostimulation resulted in a ∼65% increase in the yield of cerebrovascular responses (73 ±â€¯10% for focused and 42 ±â€¯29% for diffuse photostimulation) and a doubling of the signal-to-noise ratio of the cerebrovascular response (20.9 ±â€¯14.7 for focused and 10.4 ±â€¯1.4 for diffuse photostimulation). These data reveal important advantages of focused optogenetic photoactivation, which can be easily integrated into single- or two-photon fluorescence microscopy platforms, as a means of assessing neuronal excitability and cerebrovascular reactivity, thus paving the way for broader application of optogenetics in preclinical models of CNS diseases.


Subject(s)
Brain/blood supply , Cerebrovascular Circulation/physiology , Channelrhodopsins/metabolism , Optogenetics/methods , Animals , Brain/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
10.
Theranostics ; 8(17): 4824-4836, 2018.
Article in English | MEDLINE | ID: mdl-30279740

ABSTRACT

Traumatic brain injury (TBI) research has focused on moderate to severe injuries as their outcomes are significantly worse than those of a mild TBI (mTBI). However, recent epidemiological evidence has indicated that a series of even mild TBIs greatly increases the risk of neurodegenerative and psychiatric disorders. Neuropathological studies of repeated TBI have identified changes in neuronal ionic concentrations, axonal injury, and cytoskeletal damage as important determinants of later life neurological and mood compromise; yet, there is a paucity of data on the contribution of neurogliovascular dysfunction to the progression of repeated TBI and alterations of brain function in the intervening period. Methods: Here, we established a mouse model of repeated TBI induced via three electromagnetically actuated impacts delivered to the intact skull at three-day intervals and determined the long-term deficits in neurogliovascular functioning in Thy1-ChR2 mice. Two weeks post the third impact, cerebral blood flow and cerebrovascular reactivity were measured with arterial spin labelling magnetic resonance imaging. Neuronal function was investigated through bilateral intracranial electrophysiological responses to optogenetic photostimulation. Vascular density of the site of impacts was measured with in vivo two photon fluorescence microscopy. Pathological analysis of neuronal survival and astrogliosis was performed via NeuN and GFAP immunofluorescence. Results: Cerebral blood flow and cerebrovascular reactivity were decreased by 50±16% and 70±20%, respectively, in the TBI cohort relative to sham-treated animals. Concomitantly, electrophysiological recordings revealed a 97±1% attenuation in peri-contusional neuronal reactivity relative to sham. Peri-contusional vascular volume was increased by 33±2% relative to sham-treated mice. Pathological analysis of the peri-contusional cortex demonstrated astrogliosis, but no changes in neuronal survival. Conclusion: This work provides the first in-situ characterization of the long-term deficits of the neurogliovascular unit following repeated TBI. The findings will help guide the development of diagnostic markers as well as therapeutics targeting neurogliovascular dysfunction.


Subject(s)
Brain Injuries, Traumatic/pathology , Cerebrovascular Disorders/pathology , Disease Models, Animal , Neuroglia/pathology , Neurons/pathology , Animals , Brain Injuries, Traumatic/diagnostic imaging , Cerebrovascular Disorders/diagnostic imaging , Magnetic Resonance Imaging , Mice , Microscopy, Fluorescence , Optogenetics , Recurrence
11.
Stroke ; 49(9): 2173-2181, 2018 09.
Article in English | MEDLINE | ID: mdl-30354983

ABSTRACT

Background and Purpose- Recent evidence suggests great potential of metabolically targeted interventions for treating neurological disorders. We investigated the use of the endogenous ketone body ß-hydroxybutyrate (BHB) as an alternate metabolic substrate for the brain in the acute phase of ischemia because postischemic hyperglycemia and brain glucose metabolism elevation compromise functional recovery. Methods- We delivered BHB (or vehicle) 1 hour after ischemic insult induced by cortical microinjection of endothelin-1 in sensorimotor cortex of rats. Two days after ischemic insult, the rats underwent multimodal characterization of the BHB effects. We examined glucose uptake on 2-Deoxy-d-glucose chemical exchange saturation transfer magnetic resonance imaging, cerebral hemodynamics on continuous arterial spin labeling magnetic resonance imaging, resting-state field potentials by intracerebral multielectrode arrays, Neurological Deficit Score, reactive oxygen species production, and astrogliosis and neuronal death. Results- When compared with vehicle-administered animals, BHB-treated cohort showed decreased peri-infarct neuronal glucose uptake which was associated with reduced oxidative stress, diminished astrogliosis and neuronal death. Functional examination revealed ameliorated neuronal functioning, normalized perilesional resting perfusion, and ameliorated cerebrovascular reactivity to hypercapnia, suggesting improved functioning. Cellular and functional recovery of the neurogliovascular unit in the BHB-treated animals was associated with improved performance on the withdrawal test. Conclusions- We characterize the effects of the ketone body BHB administration at cellular and system levels after focal cortical stroke. The results demonstrate that BHB curbs the peri-infarct glucose-metabolism driven production of reactive oxygen species and astrogliosis, culminating in improved neurogliovascular and functional recovery.


Subject(s)
3-Hydroxybutyric Acid/pharmacology , Astrocytes/drug effects , Brain Ischemia/metabolism , Brain/drug effects , Neurons/drug effects , 3-Hydroxybutyric Acid/metabolism , Acetoacetates/metabolism , Animals , Astrocytes/pathology , Blood Glucose/metabolism , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Brain Ischemia/diagnostic imaging , Brain Ischemia/pathology , Cell Death/drug effects , Cerebrovascular Circulation , Disease Models, Animal , Electrophysiological Phenomena , Endothelin-1 , Hemodynamics , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Microinjections , Neurons/pathology , Rats , Reactive Oxygen Species/metabolism , Sensorimotor Cortex
12.
Front Mol Neurosci ; 11: 338, 2018.
Article in English | MEDLINE | ID: mdl-30271324

ABSTRACT

Although epidemiological evidence suggests significant sex and gender-based differences in stroke risk and recovery, females have been widely under-represented in preclinical stroke research. The neurovascular sequelae of brain ischemia in females, in particular, are largely uncertain. We set out to address this gap by a multimodal in vivo study of neurovascular recovery from endothelin-1 model of cortical focal-stroke in sham vs. ovariectomized female rats. Three weeks post ischemic insult, sham operated females recapitulated the phenotype previously reported in male rats in this model, of normalized resting perfusion but sustained peri-lesional cerebrovascular hyperreactivity. In contrast, ovariectomized (Ovx) females showed reduced peri-lesional resting blood flow, and elevated cerebrovascular responsivity to hypercapnia in the peri-lesional and contra-lateral cortices. Electrophysiological recordings showed an attenuation of theta to low-gamma phase-amplitude coupling in the peri-lesional tissue of Ovx animals, despite relative preservation of neuronal power. Further, this chronic stage neuronal network dysfunction was inversely correlated with serum estradiol concentration. Our pioneering data demonstrate dramatic differences in spontaneous recovery in the neurovascular unit between Ovx and Sham females in the chronic stage of stroke, underscoring the importance of considering hormonal-dependent aspects of the ischemic sequelae in the development of novel therapeutic approaches and patient recruitment in clinical trials.

13.
Brain Struct Funct ; 222(8): 3395-3405, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28391400

ABSTRACT

The beneficial effects of physical exercise on brain health are well documented, yet how exercise modulates cerebrovascular function is not well understood. This study used continuous arterial spin labeling magnetic resonance imaging with a hypercapnic challenge to examine changes in cerebral blood flow and vascular function after voluntary exercise in healthy, adult mice. Thirty exercise mice and twenty-one control mice were imaged prior to the start of the exercise regime (at 12 weeks of age) and after 4 weeks of voluntary exercise. After the second in vivo imaging session, we performed high-resolution ex vivo anatomical brain imaging to correlate the structural brain changes with functional measures of flow and vascular reserve. We found that exercise resulted in increases in the normocapnic and hypercapnic blood flow in the hippocampus. Moreover, the change in normocapnic blood flow between pre-exercise and post-exercise was positively correlated to the hippocampal structure volume following exercise. There was no overall effect of voluntary exercise on blood flow in the motor cortex. Surprisingly, the hypercapnic hippocampal blood flow when measured prior to the start of exercise was predictive of subsequent exercise activity. Moreover, exercise was found to normalize this pre-existing difference in hypercapnic blood flow between mice.


Subject(s)
Hippocampus/blood supply , Hippocampus/metabolism , Motor Cortex/blood supply , Motor Cortex/metabolism , Physical Conditioning, Animal , Animals , Magnetic Resonance Imaging , Male , Mice, Inbred C57BL , Spin Labels
14.
Sci Rep ; 7: 46427, 2017 04 12.
Article in English | MEDLINE | ID: mdl-28401931

ABSTRACT

Alzheimer's disease (AD), pathologically characterized by amyloid-ß peptide (Aß) accumulation, neurofibrillary tangle formation, and neurodegeneration, is thought to involve early-onset neurovascular abnormalities. Hitherto studies on AD-associated neurovascular injury have used animal models that exhibit only a subset of AD-like pathologies and demonstrated some Aß-dependent vascular dysfunction and destabilization of neuronal network. The present work focuses on the early stage of disease progression and uses TgF344-AD rats that recapitulate a broader repertoire of AD-like pathologies to investigate the cerebrovascular and neuronal network functioning using in situ two-photon fluorescence microscopy and laminar array recordings of local field potentials, followed by pathological analyses of vascular wall morphology, tau hyperphosphorylation, and amyloid plaques. Concomitant to widespread amyloid deposition and tau hyperphosphorylation, cerebrovascular reactivity was strongly attenuated in cortical penetrating arterioles and venules of TgF344-AD rats in comparison to those in non-transgenic littermates. Blood flow elevation to hypercapnia was abolished in TgF344-AD rats. Concomitantly, the phase-amplitude coupling of the neuronal network was impaired, evidenced by decreased modulation of theta band phase on gamma band amplitude. These results demonstrate significant neurovascular network dysfunction at an early stage of AD-like pathology. Our study identifies early markers of pathology progression and call for development of combinatorial treatment plans.


Subject(s)
Alzheimer Disease/physiopathology , Brain/physiopathology , Cerebrovascular Circulation/physiology , Nerve Net/physiopathology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Female , Male , Nerve Net/metabolism , Neurons/metabolism , Neurons/physiology , Phosphorylation , Rats , Rats, Transgenic , tau Proteins/metabolism
15.
J Cereb Blood Flow Metab ; 37(3): 1046-1059, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27683451

ABSTRACT

Aerobic activity has been shown highly beneficial to brain health, yet much uncertainty still surrounds the effects of exercise on the functioning of cerebral microvasculature. This study used two-photon fluorescence microscopy to examine cerebral hemodynamic alterations as well as accompanying geometric changes in the cortical microvascular network following five weeks of voluntary exercise in transgenic mice endogenously expressing tdTomato in vascular endothelial cells to allow visualization of microvessels irrespective of their perfusion levels. We found a diminished microvascular response to a hypercapnic challenge (10% FiCO2) in running mice when compared to that in nonrunning controls despite commensurate increases in transcutaneous CO2 tension. The flow increase to hypercapnia in runners was 70% lower than that in nonrunners (p = 0.0070) and the runners' arteriolar red blood cell speed changed by only half the amount seen in nonrunners (p = 0.0085). No changes were seen in resting hemodynamics or in the systemic physiological parameters measured. Although a few unperfused new vessels were observed on visual inspection, running did not produce significant morphological differences in the microvascular morphometric parameters, quantified following semiautomated tracking of the microvascular networks. We propose that voluntary running led to increased cortical microvascular efficiency and desensitization to CO2 elevation.


Subject(s)
Cerebral Cortex/blood supply , Physical Conditioning, Animal/physiology , Animals , Cerebrovascular Circulation , Hemodynamics , Hypercapnia/physiopathology , Mice , Mice, Transgenic , Microscopy, Fluorescence/methods , Running/physiology
16.
Biochim Biophys Acta ; 1862(5): 957-65, 2016 05.
Article in English | MEDLINE | ID: mdl-26521151

ABSTRACT

Despite the growing recognition of the significance of cerebrovascular impairment in the etiology and progression of Alzheimer's disease (AD), the early stage brain vascular dysfunction and its sensitivity to pharmacological interventions is still not fully characterized. Due to the early and aggressive treatment of probable AD with cholinesterase inhibitors (ChEI), which in and of themselves have direct effects on brain vasculature, the vast majority of hemodynamic measurements in early AD subjects reported hitherto have consequently been made only after the start of treatment, complicating the disentanglement of disease- vs. treatment-related effects on the cerebral vasculature. To address this gap, we used pseudo continuous arterial spin labeling MRI to measure resting perfusion and visual stimulation elicited changes in cerebral blood flow (CBF) and blood oxygenation dependent (BOLD) fMRI signal in a cohort of mild AD patients immediately prior to, 6months post, and 12months post commencement of open label cholinesterase inhibitor treatment. Although patients exhibited no gray matter atrophy prior to treatment and their resting perfusion was not distinguishable from that in age, education and gender-matched controls, the patients' visual stimulation-elicited changes in BOLD fMRI and blood flow were decreased by 10±4% (BOLD) and 23±2% (CBF), relative to those in controls. Induction of cholinesterase inhibition treatment was associated with a further, 7±2% reduction in patients' CBF response to visual stimulation, but it stabilized, at this new lower level, over the follow-up period. Likewise, MMSE scores remained stable during the treatment; furthermore, higher MMSE scores were associated with higher perfusion responses to visual stimulation. This study represents the initial step in disentangling the effects of AD pathology from those of the first line treatment with cholinesterase inhibitors on cerebral hemodynamics and supports the use of arterial spin labeling MRI for quantitative evaluation of the brain vascular function in mild Alzheimer's disease. The findings provide evidence of a pronounced deficit in the visual cortex hyperemia despite the relative sparing of visual function in early stage AD, its reduction with ChEI treatment induction, and its stabilization in the first year of cholinesterase inhibition treatment. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.


Subject(s)
Alzheimer Disease/therapy , Cerebrovascular Circulation , Cholinesterase Inhibitors/therapeutic use , Hyperemia/therapy , Aged , Aged, 80 and over , Alzheimer Disease/blood , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Brain/blood supply , Brain/diagnostic imaging , Brain/pathology , Cohort Studies , Female , Humans , Hyperemia/blood , Hyperemia/diagnostic imaging , Hyperemia/pathology , Magnetic Resonance Imaging , Male , Photic Stimulation
17.
Brain ; 138(Pt 4): 1046-58, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25688079

ABSTRACT

Most patients with Alzheimer's disease exhibit accumulation of amyloid-ß peptide on leptomeningeal and cortical arterioles, or cerebral amyloid angiopathy, which is associated with impaired vascular reactivity and accelerated cognitive decline. Despite widespread recognition of the significance of vascular dysfunction in Alzheimer's disease aetiology and progression, much uncertainty still surrounds the mechanism underlying Alzheimer's disease vascular injury. Studies to date have focused on amyloid-ß-induced damage to capillaries and plaque-associated arterioles, without examining effects across the entire vascular bed. In the present study, we investigated the structural and functional impairment of the feeding arteriolar versus draining venular vessels in a transgenic murine Alzheimer's disease model, with a particular focus on the mural cell populations that dictate these vessels' contractility. Although amyloid-ß deposition was restricted to arterioles, we found that vascular impairment extended to the venules, which showed significant depletion of their mural cell coverage by the mid-stage of Alzheimer's disease pathophysiology. These structural abnormalities were accompanied by an abolishment of the normal vascular network flow response to hypercapnia: this functional impairment was so severe as to result in hypercapnia-induced flow decreases in the arterioles. Further pharmacological depletion of mural cells using SU6668, a platelet-derived growth factor receptor-ß antagonist, resulted in profound structural abnormalities of the cortical microvasculature, including vessel coiling and short-range looping, increased tortuosity of the venules but not of the arterioles, increased amyloid-ß deposition on the arterioles, and further alterations of the microvascular network cerebral blood flow response to hypercapnia. Together, this work shows hitherto unrecognized structural alterations in penetrating venules, demonstrates their functional significance and sheds light on the complexity of the relationship between vascular network structure and function in Alzheimer's disease.


Subject(s)
Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Cerebrovascular Circulation , Disease Models, Animal , Venules/pathology , Venules/physiopathology , Animals , Cricetinae , Humans , Mice , Mice, 129 Strain , Mice, Transgenic , Microscopy, Fluorescence, Multiphoton/methods
18.
Aging Cell ; 12(2): 224-36, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23413811

ABSTRACT

Development of cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD) is associated with failure of elimination of amyloid-ß (Aß) from the brain along perivascular basement membranes that form the pathways for drainage of interstitial fluid and solutes from the brain. In transgenic APP mouse models of AD, the severity of cerebral amyloid angiopathy is greater in the cerebral cortex and hippocampus, intermediate in the thalamus, and least in the striatum. In this study we test the hypothesis that age-related regional variation in (1) vascular basement membranes and (2) perivascular drainage of Aß contribute to the different regional patterns of CAA in the mouse brain. Quantitative electron microscopy of the brains of 2-, 7-, and 23-month-old mice revealed significant age-related thickening of capillary basement membranes in cerebral cortex, hippocampus, and thalamus, but not in the striatum. Results from Western blotting and immunocytochemistry experiments showed a significant reduction in collagen IV in the cortex and hippocampus with age and a reduction in laminin and nidogen 2 in the cortex and striatum. Injection of soluble Aß into the hippocampus or thalamus showed an age-related reduction in perivascular drainage from the hippocampus but not from the thalamus. The results of the study suggest that changes in vascular basement membranes and perivascular drainage with age differ between brain regions, in the mouse, in a manner that may help to explain the differential deposition of Aß in the brain in AD and may facilitate development of improved therapeutic strategies to remove Aß from the brain in AD.


Subject(s)
Aging/pathology , Amyloid beta-Peptides/metabolism , Basement Membrane/pathology , Cerebral Amyloid Angiopathy/pathology , Aging/metabolism , Animals , Basement Membrane/metabolism , Calcium-Binding Proteins , Capillaries/metabolism , Capillaries/pathology , Cell Adhesion Molecules , Cerebral Amyloid Angiopathy/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Collagen Type IV/metabolism , Corpus Striatum/metabolism , Corpus Striatum/pathology , Extracellular Fluid/metabolism , Female , Hippocampus/metabolism , Hippocampus/pathology , Humans , Laminin/metabolism , Male , Membrane Glycoproteins/metabolism , Mice , Mice, Transgenic , Organ Specificity , Thalamus/metabolism , Thalamus/pathology
19.
Neuroimage ; 71: 248-59, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23353600

ABSTRACT

The cortical microvessels are organized in an intricate, hierarchical, three-dimensional network. Superimposed on this anatomical complexity is the highly complicated signaling that drives the focal blood flow adjustments following a rise in the activity of surrounding neurons. The microvascular response to neuronal activation remains incompletely understood. We developed a custom two photon fluorescence microscopy acquisition and analysis to obtain 3D maps of neuronal activation-induced changes in the geometry of the microvascular network of the primary somatosensory cortex of anesthetized rats. An automated, model-based tracking algorithm was employed to reconstruct the 3D microvascular topology and represent it as a graph. The changes in the geometry of this network were then tracked, over time, in the course of electrical stimulation of the contralateral forepaw. Both dilatory and constrictory responses were observed across the network. Early dilatory and late constrictory responses propagated from deeper to more superficial cortical layers while the response of the vertices that showed initial constriction followed by later dilation spread from cortical surface toward increasing cortical depths. Overall, larger caliber adjustments were observed deeper inside the cortex. This work yields the first characterization of the spatiotemporal pattern of geometric changes on the level of the cortical microvascular network as a whole and provides the basis for bottom-up modeling of the hemodynamically-weighted neuroimaging signals.


Subject(s)
Cerebrovascular Circulation/physiology , Hemodynamics , Somatosensory Cortex/blood supply , Somatosensory Cortex/physiology , Animals , Brain Mapping/methods , Male , Microscopy, Fluorescence , Microvessels/anatomy & histology , Microvessels/physiology , Rats , Rats, Sprague-Dawley
20.
Brain ; 135(Pt 10): 3039-50, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23065792

ABSTRACT

The majority of patients with Alzheimer's disease have cerebral amyloid angiopathy, thus showing deposition of amyloid-ß peptides in the walls of leptomeningeal and cortical arterioles. These deposits are believed to result from impaired clearance of parenchymal amyloid-ß peptides. In the current work, we examined the changes in cortical microvascular structure and function in situ in TgCRND8, a transgenic mouse model of Alzheimer's disease. In contrast to venules, cortical arterioles were shown to increase in tortuosity and decrease in calibre with amyloid-ß peptide accumulation. These structural changes were accompanied by progressive functional compromise, reflected in higher dispersion of microvascular network transit times, elongation of the transit times, and impaired microvascular reactivity to hypercapnia in the transgenic mice. Moreover, inhibition of amyloid-ß peptide oligomerization and fibrillization via post-weaning administration of scyllo-inositol, a naturally occurring stereoisomer of myo-inositol, rescued both structural and functional impairment of the cortical microvasculature in this Alzheimer's disease model. These results demonstrate that microvascular impairment is directly correlated with amyloid-ß accumulation and highlight the importance of targeting cerebrovascular amyloid angiopathy clearance for effective diagnosis, monitoring of disease progression and treatment of Alzheimer's disease.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Amyloid beta-Peptides/physiology , Brain/blood supply , Brain/metabolism , Disease Models, Animal , Microcirculation/physiology , Alzheimer Disease/therapy , Animals , Arterioles/pathology , Arterioles/physiopathology , Brain/physiopathology , Capillaries/pathology , Capillaries/physiopathology , Cerebral Angiography , Disease Progression , Mice , Mice, 129 Strain , Mice, Transgenic , Venules/pathology , Venules/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...