Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Res Toxicol ; 23(10): 1556-67, 2010 Oct 18.
Article in English | MEDLINE | ID: mdl-20873715

ABSTRACT

1,2,3,4-Diepoxybutane (DEB) is a carcinogenic metabolite of 1,3-butadiene (BD), an important industrial and environmental chemical present in urban air and in cigarette smoke. DEB is considered the ultimate carcinogenic species of BD because of its potent genotoxicity and mutagenicity attributed to its ability to form DNA-DNA cross-links and exocyclic nucleoside adducts. Mutagenesis studies suggest that DEB adducts formed at adenine bases may be critically important, as it induces large numbers of A → T transversions. We have recently identified three types of exocyclic DEB-dA lesions: N6,N6-(2,3-dihydroxybutan-1,4-diyl)-2'-deoxyadenosine (N6,N6-DHB-dA), 1,N6-(2-hydroxy-3-hydroxymethylpropan-1,3-diyl)-2'-deoxyadenosine (1,N6-γ-HMHP-dA), and 1,N6-(1-hydroxymethyl-2-hydroxypropan-1,3-diyl)-2'-deoxyadenosine (1,N6-α-HMHP-dA) [Seneviratne, U., et al. (2010) Chem. Res. Toxicol. 23, 118-133]. In the work presented here, a postsynthetic methodology for preparing DNA oligomers containing stereospecific and site-specific N6,N6-DHB-dA and 1,N6-γ-HMHP-dA adducts was developed. DNA oligomers containing site-specific 6-chloropurine were coupled with optically pure 1-amino-2-hydroxy-3,4-epoxybutanes to generate oligomers containing N6-(2-hydroxy-3,4-epoxybut-1-yl)-2'-deoxyadenosine adducts, followed by their spontaneous cyclization to 1,N6-γ-HMHP-dA lesions. N6,N6-DHB-dA containing strands were prepared analogously by coupling 6-chloropurine containing DNA with (3S,4S)- or (3R,4R)-pyrrolidine-3,4-diols. Oligodeoxynucleotide structures were confirmed by ESI-MS, exonuclease ladder sequencing, and HPLC-MS/MS of enzymatic digests. UV melting and CD spectroscopy studies of DNA duplexes containing N6,N6-DHB-dA and 1,N6-γ-HMHP-dA revealed that both lesions lower the thermodynamic stability of DNA. Interestingly, structurally modified DNA duplexes were more thermodynamically stable when an adenine residue was placed opposite 1,N6-γ-HMHP-dA instead of thymine, suggesting that these adducts may preferentially pair with dA.


Subject(s)
DNA Adducts/chemistry , DNA/chemistry , Deoxyadenosines/chemical synthesis , Epoxy Compounds/chemistry , Adenosine/analogs & derivatives , Adenosine/chemical synthesis , Adenosine/chemistry , Chromatography, High Pressure Liquid , Circular Dichroism , Deoxyadenosines/chemistry , Epoxy Compounds/chemical synthesis , Phase Transition , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Stereoisomerism , Thermodynamics , Transition Temperature , Ultraviolet Rays
2.
Chem Res Toxicol ; 23(1): 118-33, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19883087

ABSTRACT

1,2,3,4-Diepoxybutane (DEB) is considered the ultimate carcinogenic metabolite of 1,3-butadiene, an important industrial chemical and environmental pollutant present in urban air. Although it preferentially modifies guanine within DNA, DEB induces a large number of A --> T transversions, suggesting that it forms strongly mispairing lesions at adenine nucleobases. We now report the discovery of three potentially mispairing exocyclic adenine lesions of DEB: N(6),N(6)-(2,3-dihydroxybutan-1,4-diyl)-2'-deoxyadenosine (compound 2), 1,N(6)-(2-hydroxy-3-hydroxymethylpropan-1,3-diyl)-2'-deoxyadenosine (compound 3), and 1,N(6)-(1-hydroxymethyl-2-hydroxypropan-1,3-diyl)-2'-deoxyadenosine (compound 4). The structures and stereochemistry of the novel DEB-dA adducts were determined by a combination of UV and NMR spectroscopy, tandem mass spectrometry, and independent synthesis. We found that synthetic N(6)-(2-hydroxy-3,4-epoxybut-1-yl)-2'-deoxyadenosine (compound 1) representing the product of N(6)-adenine alkylation by DEB spontaneously cyclizes to form 3 under aqueous conditions or 2 under anhydrous conditions in the presence of an organic base. Compound 3 can be interconverted with 4 by a reversible unimolecular pericyclic reaction favoring 4 as a more thermodynamically stable product. Both 3 and 4 are present in double stranded DNA treated with DEB in vitro and in liver DNA of laboratory mice exposed to 1,3-butadiene by inhalation. We propose that in DNA under physiological conditions, DEB alkylates the N-1 position of adenine in DNA to form N1-(2-hydroxy-3,4-epoxybut-1-yl)-adenine adducts, which undergo an S(N)2-type intramolecular nucleophilic substitution and rearrangement to give 3 (minor) and 4 (major). Formation of exocyclic DEB-adenine lesions following exposure to 1,3-butadiene provides a possible mechanism of mutagenesis at the A:T base pairs.


Subject(s)
DNA Adducts/chemical synthesis , Deoxyadenosines/chemistry , Epoxy Compounds/chemistry , Base Pairing , Butadienes/chemistry , Butadienes/metabolism , Chromatography, High Pressure Liquid , DNA Adducts/chemistry , Models, Molecular , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Ultraviolet
3.
Chem Biol Interact ; 166(1-3): 104-11, 2007 Mar 20.
Article in English | MEDLINE | ID: mdl-16765925

ABSTRACT

3,4-Epoxy-1-butene (EB) is generated by cytochrome P450-mediated epoxidation of 1,3-butadiene (BD), an important environmental and industrial chemical classified as a probable human carcinogen. The ability of EB to induce point mutations at GC and AT base pairs has been attributed to its reactions with DNA to form covalent nucleobase adducts. Guanine alkylation is preferred at the endocyclic N7 nitrogen, while adenine can be modified at the N1-, N3-, N7-, and the N6 positions. For each of these sites, a pair of regioisomeric 2-hydroxy-3-buten-1-yl and 1-hydroxy-3-buten-2-yl adducts is produced as a result of epoxide ring opening at the terminal C-4 or the internal C-3 carbon position of EB, respectively. The N6-EB-adenine adducts are of particular interest because of their stability in DNA, potentially leading to their accumulation in vivo. In the present work, synthetic DNA oligomers containing structurally defined N6-(2-hydroxy-3-buten-1-yl)-dA (N6-HB-dA) adducts were prepared for the first time by a postoligomerization approach that involved coupling 6-chloropurine-containing DNA with synthetic 1-amino-3-buten-2-ol. N6-HB-dA-containing DNA oligomers were isolated by reversed phase HPLC, and the presence of N6-HB-dA in their structure was confirmed by molecular weight determination from HPLC-ESI- -MS of the intact strands and by HPLC-ESI+-MS/MS and MS/MS/MS analyses of the enzymatic digests using synthetic N6-HB-dA as an authentic standard. N6-HB-dA-containing oligomers generated in this study will be used for structural and biological studies.


Subject(s)
Adenine/chemistry , DNA Adducts/analysis , DNA/chemistry , DNA/chemical synthesis , Epoxy Compounds/chemistry , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/chemical synthesis , Adenine/analogs & derivatives , Adenine/analysis , Adenine/chemical synthesis , Chromatography, High Pressure Liquid , DNA Adducts/chemical synthesis , DNA Adducts/chemistry , Epoxy Compounds/chemical synthesis , Hydrolysis , Magnetic Resonance Spectroscopy , Reference Standards , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...