Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Aquat Toxicol ; 152: 324-34, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24813265

ABSTRACT

Phenanthrene (PHE), a major component of crude oil, is one of the most abundant polycyclic aromatic hydrocarbons (PAHs) in aquatic ecosystems, and is readily bioavailable to marine organisms. Understanding the toxicity of PAHs in animals requires knowledge of the systems for xenobiotic biotransformation and antioxidant defence and these are poorly understood in bivalves. We report, for the first time, new transcripts and tissue-specific transcription in gill and digestive gland from the oyster Crassostrea brasiliana following 24h exposure to 100 and 1000µgL(-1) PHE, a model PAH. Six new cytochrome P450 (CYP) and four new glutathione S-transferase (GST) genes were analysed by means of quantitative reverse transcription PCR (qRT-PCR). Different antioxidant endpoints, including both enzymatic and non-enzymatic parameters, were assessed as potential biomarkers of oxidative stress. GST activity was measured as an indicator of phase II biotransformation. Rapid clearance of PHE was associated with upregulation of both phase I and II genes, with more pronounced effects in the gill at 1000µgL(-1) PHE. After 24h of exposure, PHE also caused impairment of the antioxidant system, decreasing non-protein thiols and glutathione levels. On the other hand, no change in antioxidant enzymes was observed. PHE treatment (100µgL(-1)) significantly decreased GST activity in the gill of exposed oysters. Both CYP and GST were transcribed in a tissue-specific manner, reflecting the importance of the gill in the detoxification of PAHs. Likewise, the antioxidant parameters followed a similar pattern. The data provide strong evidence that these genes play key roles in C. brasiliana biotransformation of PHE and highlight the importance of gill in xenobiotic metabolism.


Subject(s)
Crassostrea/drug effects , Phenanthrenes/metabolism , Phenanthrenes/toxicity , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Animals , Biotransformation/genetics , Crassostrea/enzymology , Crassostrea/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Gills/drug effects , Gills/enzymology , Gills/metabolism , Glutathione/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Inactivation, Metabolic
2.
Aquat Toxicol ; 105(3-4): 652-60, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21963596

ABSTRACT

Understanding the toxic mechanisms by which organisms cope to environmental stressful conditions is a fundamental question for ecotoxicology. In this study, we evaluated biochemical responses and hydrocarbons bioaccumulation of the mangrove oyster Crassostrea brasiliana exposed for 96 h to four sublethal concentrations of diesel fuel water-accommodated fraction (WAF). For that purpose, enzymatic activities (SOD, CAT, GPx, GR, G6PDH, GST and GGT), HSP60 and HSP90 immunocontent and lipid peroxidation (LPO) levels were determined in the gill and digestive gland of oysters and related to the hydrocarbons accumulated in the whole soft tissues. The results of this study revealed clear biochemical responses to diesel fuel WAF exposure in both tissues of the oyster. The capacity of C. brasiliana to bioaccumulate aliphatic and aromatic hydrocarbons in a dose-dependent manner is a strong indication of its suitability as a model in biomonitoring programs along the Brazilian coast, which was also validated by the response of the antioxidant defenses, phase II biotransformation and chaperones. HSP60 levels and GGT activity were the most promising biomarkers in the gill, while GST and GR activities stood out as suitable biomarkers for the detection of diesel toxicity in the digestive gland. The decrease of SOD activity and HSP90 levels may also reflect a negative effect of diesel exposure regardless the tissue. The present results provide a sound preliminary report on the biochemical responses of C. brasiliana challenged with a petroleum by-product and should be carefully considered for use in the monitoring of oil and gas activities in Brazil.


Subject(s)
Crassostrea/metabolism , Gasoline/toxicity , Hydrocarbons, Alicyclic/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity , Animals , Antioxidants/metabolism , Biomarkers/metabolism , Digestive System/drug effects , Digestive System/metabolism , Dose-Response Relationship, Drug , Gills/drug effects , Gills/metabolism , Hydrocarbons, Alicyclic/pharmacokinetics , Lipid Peroxidation/drug effects , Metabolic Detoxication, Phase II , Oxidative Stress , Polycyclic Aromatic Hydrocarbons/pharmacokinetics , Principal Component Analysis , Water Pollutants, Chemical/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...