Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 261(7): 3451-6, 1986 Mar 05.
Article in English | MEDLINE | ID: mdl-2869032

ABSTRACT

When the particulate fraction from a rat liver homogenate was incubated with [3H]putrescine and calcium, the radioactive amine was incorporated into the membranes via a transglutaminase-mediated reaction. Fractionation of the membranes by isopycnic density gradient centrifugation revealed that the radioactive label was coincident with the 5'-nucleotidase and transglutaminase activities which serve as markers for the plasma membrane (Slife, C. W., Dorsett, M. D., Bouquett, G. T., Register, A., Taylor, E., and Conroy, S. Arch. Biochem. Biophys. 241, 329-336). If the labeled membranes were treated with digitonin and fractionated, the radioactivity and the plasma membrane enzyme activities coincidentally shifted to a greater density. Examination of the [3H]putrescine-labeled membranes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography showed that the largest amount of radioactivity was associated with a large molecular weight material that did not enter the acrylamide gel. Pulse-chase experiments indicated that the large aggregate already was present in the native membrane, or that it was formed very rapidly during the putrescine incubation. The complex did not result from putrescine cross-linking between proteins since dansylcadaverine and [3H]histamine were also selectively incorporated into it. These data show that there are protein substrates in the plasma membrane which are accessible to the membrane-associated transglutaminase and that the substrates form a large molecular weight aggregate which is not dissociated by sodium dodecyl sulfate and disulfide reducing agents.


Subject(s)
Liver/enzymology , Transglutaminases/metabolism , Animals , Cell Membrane/enzymology , Centrifugation, Density Gradient , Digitonin/pharmacology , Liver/cytology , Membrane Proteins/metabolism , Molecular Weight , Putrescine/metabolism , Rats , Time Factors , Tissue Distribution
2.
Arch Biochem Biophys ; 241(2): 329-36, 1985 Sep.
Article in English | MEDLINE | ID: mdl-2864017

ABSTRACT

Fractionation of rat liver by homogenization and differential centrifugation revealed that only about 83% of the transglutaminase activity in the tissue is in a soluble form, and that the remainder is associated with the particulate fraction. This latter activity remained with the membranes even after they were extensively washed to remove 99% of such soluble enzymes as lactate dehydrogenase and aldolase. Subsequent fractionation of the membranes by isopycnic density gradient centrifugation in sucrose resulted in a single band of transglutaminase activity at a density of 1.194 g/cm3. This activity was coincident with the major band of plasma membranes, which was identified by its content of 5'-nucleotidase, alkaline phosphodiesterase I, alkaline phosphatase and leucine aminopeptidase activities. After treatment with digitonin and fractionation on sucrose gradients, the transglutaminase activity and the plasma membrane marker enzyme activities were found at a new density of 1.210 g/cm3, while the enzyme markers for the other membrane fractions remained unchanged. From these data, we conclude that approximately 17% of the transglutaminase activity in rat liver is specifically associated with the plasma membranes.


Subject(s)
Acyltransferases/analysis , Liver/enzymology , Animals , Cell Fractionation , Cell Membrane/enzymology , Centrifugation, Density Gradient , Digitonin/pharmacology , Liver/ultrastructure , Rats , Transglutaminases
SELECTION OF CITATIONS
SEARCH DETAIL
...