Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 93(22): 8027-8034, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34038637

ABSTRACT

Complementary metal-oxide-semiconductor (CMOS) microelectrode arrays integrate amplifier arrays with on-chip electrodes, offering high-throughput platforms for electrochemical sensing with high spatial and temporal resolution. Such devices have been developed for highly parallel constant voltage amperometric detection of transmitter release from multiple cells with single-vesicle resolution. Cyclic voltammetry (CV) is an electrochemical method that applies voltage waveforms, which provides additional information about electrode properties and about the nature of analytes. A 16-channel, 64-electrode-per-channel CMOS integrated circuit (IC) fabricated in a 0.5 µm CMOS process for CV is demonstrated. Each detector consists of only 11 transistors and an integration capacitor with a unit dimension of 0.0015 mm2. The device was postfabricated using Pt as the working electrode material with a shifted electrode design, which makes it possible to redefine the size and the location of working electrodes. The system incorporating cell-sized (8 µm radius) microelectrodes was validated with dopamine injection tests and CV measurements of potassium ferricyanide at a 1 V/s scanning rate. The cyclic voltammograms were in excellent agreement with theoretical predictions. The technology enables rigorous characterization of electrode performance for the application of CMOS microelectrode arrays in low-noise amperometric measurements of quantal transmitter release as well as other biosensing applications.


Subject(s)
Electrochemical Techniques , Semiconductors , Dopamine , Microelectrodes , Oxides
2.
IEEE Trans Biomed Circuits Syst ; 12(4): 894-903, 2018 08.
Article in English | MEDLINE | ID: mdl-29994774

ABSTRACT

A potentiostat circuit for the application of bipolar electrode voltages and detection of bidirectional currents using a microelectrode array is presented. The potentiostat operates as a regulated-cascode amplifier for positive input currents, and as an active-input regulated-cascode mirror for negative input currents. This topology enables constant-potential amperometry and fast-scan cyclic voltammetry (FSCV) at microelectrode arrays for parallel recording of quantal release events, electrode impedance characterization, and high-throughput drug screening. A 64-channel FSCV detector array, fabricated in a 0.5-$\mu$m, 5-V CMOS process, is also demonstrated. Each detector occupies an area of 45  $\mu$m $\times$ 30 $\mu$m and consists of only 14 transistors and a 50-fF integrating capacitor. The system was validated using prerecorded input stimuli from actual FSCV measurements at a carbon-fiber microelectrode.


Subject(s)
Electrochemical Techniques/methods , Microelectrodes , Animals , Biosensing Techniques/methods , Cell Membrane/metabolism , Exocytosis/physiology , Humans , Neurons/metabolism , Noise
3.
IEEE Trans Biomed Circuits Syst ; 10(2): 289-99, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26057983

ABSTRACT

A 30-µW wireless fast-scan cyclic voltammetry monitoring integrated circuit for ultra-wideband (UWB) transmission of dopamine release events in freely-behaving small animals is presented. On-chip integration of analog background subtraction and UWB telemetry yields a 32-fold increase in resolution versus standard Nyquist-rate conversion alone, near a four-fold decrease in the volume of uplink data versus single-bit, third-order, delta-sigma modulation, and more than a 20-fold reduction in transmit power versus narrowband transmission for low data rates. The 1.5- mm(2) chip, which was fabricated in 65-nm CMOS technology, consists of a low-noise potentiostat frontend, a two-step analog-to-digital converter (ADC), and an impulse-radio UWB transmitter (TX). The duty-cycled frontend and ADC/UWB-TX blocks draw 4 µA and 15 µA from 3-V and 1.2-V supplies, respectively. The chip achieves an input-referred current noise of 92 pA(rms) and an input current range of ±430 nA at a conversion rate of 10 kHz. The packaged device operates from a 3-V coin-cell battery, measures 4.7 × 1.9 cm(2), weighs 4.3 g (including the battery and antenna), and can be carried by small animals. The system was validated by wirelessly recording flow-injection of dopamine with concentrations in the range of 250 nM to 1 µM with a carbon-fiber microelectrode (CFM) using 300-V/s FSCV.


Subject(s)
Dopamine/metabolism , Telemetry/instrumentation , Wireless Technology/instrumentation , Analog-Digital Conversion , Animals , Equipment Design , Equipment Failure Analysis , Microelectrodes , Signal Processing, Computer-Assisted/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...