Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 92(6): 2538-45, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24778329

ABSTRACT

Two hundred fifty-two cross-bred yearling steers (406 ± 24 kg BW) were used in a completely randomized block design with a 2 × 2 factorial arrangement of treatments (7 pens/treatment) to evaluate the effects of dietary Saccharomyces cerevisiae fermentation product (SFP) and monensin (MON) on growth performance and carcass characteristics. Dietary treatments arranged as a 2 × 2 factorial were 1) with or without SFP and 2) with or without MON. Finishing diets contained 19.7% of DM as dried distiller's grains with solubles. Both SFP and MON were added in the total mixed ration in place of an equal amount of cornmeal (DM basis; target intake = 2.8 g of SFP and 33 mg of MON/kg of dietary DM). Each treatment group was offered ad libitum access to a transition ration from d 1 to 8 and then to the finishing ration from d 9 to 125. Body weights were collected on d 0, 28, 56, 84, 110, and 125. Initial and final BW was an average of 2-d weights (d -1 and 0 and d 124 and 125, respectively). Steers were shipped for harvest on d 125. Overall ADG was decreased (P = 0.03) in steers supplemented with SFP, but final BW was similar among treatments. Feeding SFP was associated with lighter (P < 0.01) HCW and a greater (P = 0.01) number of carcasses grading USDA Choice. Twelfth rib fat thickness was not affected by SFP (P = 0.82) or MON (P = 0.35), but numerical decreases in 12th rib fat thickness among cattle receiving SFP or MON alone contributed to a tendency (P = 0.07) for greater 12 rib fat thickness when SFP and MON were provided. There was no effect of treatment on cost of gain (P ≥ 0.21). The effects of SFP in the current study may have been limited in heavy yearling steers due to consumption of a finishing diet containing 19.7% dried distiller's grains with solubles.


Subject(s)
Animal Feed/analysis , Body Composition/drug effects , Cattle/physiology , Diet/veterinary , Saccharomyces cerevisiae , Animal Feed/economics , Animal Nutritional Physiological Phenomena , Animals , Body Weight , Cattle/growth & development , Diet/economics , Edible Grain , Fermentation , Monensin/pharmacology
2.
J Dairy Sci ; 95(10): 6027-41, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22921623

ABSTRACT

The purpose of this study was to use meta-analytic methods to estimate the effect of a commercially available yeast culture product on milk production and other production measures in lactating dairy cows using a meta-analysis of randomized controlled trials. Sixty-one research publications (published journal articles, published abstracts, and technical reports) were identified through a review of literature provided by the manufacturer and a search of published literature using 6 search engines. Thirty-six separate studies with 69 comparisons met the criteria for inclusion in the meta-analysis. The fixed-effect meta-analysis showed substantial heterogeneity for milk yield, energy-corrected milk, 3.5% fat-corrected milk, milk fat yield, and milk protein yield. Sub-group analysis of the data showed much less heterogeneity in peer-reviewed studies versus non-peer-reviewed abstracts and technical reports, and tended to show higher, but not significantly different, treatment effects. A random-effects meta-analysis showed estimated raw mean differences between treated and untreated cattle reported in peer-reviewed publications of 1.18 kg/d [95% confidence interval (CI): 0.55 to 1.81], 1.61 kg/d (95% CI: 0.92 to 2.29), and 1.65 kg/d (95% CI: 0.97 to 2.34) for milk yield, 3.5% fat-corrected milk, and energy-corrected milk, respectively. Milk fat yield and milk protein yield for peer-reviewed studies showed an increase in the raw mean difference of 0.06 kg/d (95% CI: 0.01 to 0.10) and 0.03 kg/d (95% CI: 0.00 to 0.05), respectively. Estimated raw mean dry matter intake of the peer-reviewed studies during early lactation (<70 d in milk) and not-early lactation were 0.62 kg/d (95% CI: 0.21 to 1.02) and a decrease of 0.78 kg/d (95% CI: -1.36 to -0.21), respectively. These findings provide strong evidence that this commercially available yeast culture product provides significant improvement in several important milk production outcomes as evaluated in production settings typical for commercial dairies in North America. Utilizing meta-analytic methods to study the complete breadth of information relating to a specific treatment by studying multiple overcomes of all eligible studies can reduce the uncertainty often seen in small individual studies designed without sufficient power to detect differences in treatments.


Subject(s)
Cattle/physiology , Diet/veterinary , Lactation/physiology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Anaerobiosis/physiology , Animal Feed , Animal Nutritional Physiological Phenomena/physiology , Animals , Cattle/metabolism , Female , Fermentation/physiology
3.
J Anim Sci ; 81(4): 1004-12, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12723090

ABSTRACT

Two experiments were conducted to evaluate the effects of live yeast supplementation on nursery pig performance, nutrient digestibility, and fecal microflora and to determine whether live yeast could replace antibiotics and growth-promoting concentrations of Zn and Cu in nursery pigs. In Exp. 1, 156 pigs were weaned at 17 d of age (BW = 5.9 kg) and allotted to a 2 x 2 factorial randomized complete block design (six or seven pigs per pen with six pens per treatment). Factors consisted of 1) dietary supplementation with oat products (oat flour and steam-rolled oats; 0 or 27.7%) and 2) yeast supplementation at 0 or 1.6 x 10(7) cfu of Saccharomyces cerevisiae SC47/g of feed. In Exp. 2, 96 pigs were weaned at 17 d of age and allotted to a 2 x 2 factorial randomized complete block design (four pigs per pen with six pens per treatment) with factors of 1) diet type (positive control containing growth-promoting concentrations of Zn, Cu, and antibiotics or negative control) and 2) live yeast supplementation (0 or 2.4 x 10(7) cfu of Saccharomyces cerevisiae SC47/g of feed). The inclusion of oat products in Exp. 1 decreased (P < 0.10) overall ADG and final BW. Yeast supplementation did not affect growth performance of pigs in Exp. 1 (P = 0.65); however, ADG in Exp. 2 was 10.6% greater (P < 0.01) and ADFI was increased by 9.4% (P < 0.10) in pigs supplemented with yeast in the positive control diet. Addition of Zn, Cu, and antibiotics to the diet improved gain:feed ratio during the prestarter period (P < 0.02) and overall (P = 0.10). In Exp. 1, inclusion of oat products increased (P < 0.01) total bacteria in feces when measured on d 10. Fecal lactobacilli measured on d 28 were reduced (P < 0.05) in pigs fed diets with oat products and yeast (interaction, P < 0.05). In Exp. 2, yeast supplementation decreased (P < 0.05) total bacteria and lactobacilli. Dietary yeast resulted in a greater (P < 0.05) yeast count in feces of pigs during the starter phase of Exp. 1. Yeast decreased (P < 0.10) the digestibility of DM, fat, and GE in the prestarter phase and DM, fat, P, and GE in the starter phase, whereas oat products increased the digestibility of DM, CP, fat, and GE (P < 0.05) in the prestarter phase. Results indicate that live yeast supplementation had a positive effect on nursery pig performance when diets contained growth-promoting antimicrobials. Nonetheless, the response was variable, and the conditions under which a response might be expected need to be further defined.


Subject(s)
Avena , Digestion , Feces/microbiology , Saccharomyces cerevisiae/physiology , Swine/growth & development , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Colony Count, Microbial/veterinary , Diet/veterinary , Female , Male , Nutritive Value , Random Allocation , Swine/metabolism , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL
...