Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 22124, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33335181

ABSTRACT

The efficacy of aminolevulinic acid (5-ALA)-based photodynamic diagnosis (5-ALA-PDD) and photodynamic therapy (5-ALA-PDT) is dependent on 5-ALA-induced cancer-specific accumulation of protoporphyrin IX (PpIX). We previously reported that inhibition of oncogenic Ras/MEK increases PpIX accumulation in cancer cells by reducing PpIX efflux through ATP-binding cassette sub-family B member 1 (ABCB1) and ferrochelatase (FECH)-catalysed PpIX conversion to haem. Here, we sought to identify the downstream pathways of Ras/MEK involved in the regulation of PpIX accumulation via ABCB1 and FECH. First, we demonstrated that Ras/MEK activation reduced PpIX accumulation in RasV12-transformed NIH3T3 cells and HRAS transgenic mice. Knockdown of p90 ribosomal S6 kinases (RSK) 2, 3, or 4 increased PpIX accumulation in RasV12-transformed NIH3T3 cells. Further, treatment with an RSK inhibitor reduced ABCB1 expression and increased PpIX accumulation. Moreover, HIF-1α expression was reduced when RasV12-transformed NIH3T3 cells were treated with a MEK inhibitor, demonstrating that HIF-1α is a downstream element of MEK. HIF-1α inhibition decreased FECH activity and increased PpIX accumulation. Finally, we demonstrated the involvement of RSKs and HIF-1α in the regulation of PpIX accumulation in human cancer cell lines. These results demonstrate that the RSK-ABCB1 and HIF-1α-FECH axes are the downstream pathways of Ras/MEK involved in the regulation of PpIX accumulation.


Subject(s)
Ferrochelatase/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Neoplasms/metabolism , Protoporphyrins/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Cell Line, Tumor , Gene Expression , Humans , Mice , Mice, Transgenic , Models, Biological , NIH 3T3 Cells , Neoplasms/etiology , Neoplasms/pathology , ras Proteins/metabolism
2.
Theranostics ; 8(8): 2134-2146, 2018.
Article in English | MEDLINE | ID: mdl-29721068

ABSTRACT

Protoporphyrin IX (PpIX) is an endogenous fluorescent molecule that selectively accumulates in cancer cells treated with the heme precursor 5-aminolevulinic acid (5-ALA). This cancer-specific accumulation of PpIX is used to distinguish tumor from normal tissues in fluorescence-guided surgery (FGS) and to destroy cancer cells by photodynamic therapy (PDT). In this study, we demonstrate that oncogenic Ras/mitogen-activated protein kinase kinase (MEK) pathway can modulate PpIX accumulation in cancer cells. Methods: To identify Ras downstream elements involved in PpIX accumulation, chemical inhibitors were used. To demonstrate the increase of PpIX accumulation by MEK inhibition, different human normal and cancer cell lines, BALB/c mice bearing mammary 4T1 tumors and athymic nude mice bearing human tumors were used. To identify the mechanisms of PpIX regulation by MEK, biochemical and molecular biological experiments were conducted. Results: Inhibition of one of the Ras downstream elements, MEK, promoted PpIX accumulation in cancer cells treated with 5-ALA, while inhibitors against other Ras downstream elements did not. Increased PpIX accumulation with MEK inhibition was observed in different types of human cancer cell lines, but not in normal cell lines. We identified two independent cellular mechanisms that underlie this effect in cancer cells. MEK inhibition reduced PpIX efflux from cancer cells by decreasing the expression level of ATP binding cassette subfamily B member 1 (ABCB1) transporter. In addition, the activity of ferrochelatase (FECH), the enzyme responsible for converting PpIX to heme, was reduced by MEK inhibition. Finally, we found that in vivo treatment with MEK inhibitors increased PpIX accumulation (2.2- to 2.4-fold) within mammary 4T1 tumors in BALB/c mice injected with 5-ALA without any change in normal organs. Similar results were also observed in a human tumor xenograft model. Conclusion: Our study demonstrates that inhibition of oncogenic Ras/MEK significantly enhances PpIX accumulation in vitro and in vivo in a cancer-specific manner. Thus, suppressing the Ras/MEK pathway may be a viable strategy to selectively intensify PpIX fluorescence in cancer cells and improve its clinical applications in FGS.


Subject(s)
Genes, ras , Mitogen-Activated Protein Kinase Kinases/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Protoporphyrins/pharmacology , Signal Transduction , ATP Binding Cassette Transporter, Subfamily B/metabolism , Aminolevulinic Acid/pharmacology , Animals , Cell Line, Tumor , Female , Ferrochelatase/metabolism , Fluorescence , Heme/metabolism , Humans , Imaging, Three-Dimensional , Mice , Mice, Inbred BALB C , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects
3.
Epigenetics ; 8(2): 184-91, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23299801

ABSTRACT

Females of the SWR/Bm (SWR) inbred mouse strain possess a unique susceptibility to juvenile-onset tumors originating from the granulosa cells (GC) of the ovarian follicles. Tumor susceptibility is an inherited, polygenic trait in SWR females, minimally involving an oncogenic Granulosa cell tumor susceptibility (Gct) locus on chromosome (Chr) 4 (Gct1), and two GC tumor susceptibility modifier genes mapped to distinct regions of Chr X (Gct4 and Gct6). Shifts in the frequency of GC tumor initiation in the SWR female population from low penetrance to moderate penetrance, or phenotype switching between GC tumor-susceptible and GC tumor-resistant, is strongly influenced by the allelic contributions at Gct4 and Gct6. In addition to the allele-specific effects, GC tumor susceptibility is controlled by the mode of X-linked transmission with a dominant, paternal parent-of-origin effect. We took advantage of the robust paternal effect with a recombinant male progeny testing strategy to resolve the Gct4 locus interval to 1.345 million base (Mb) pairs. Based on the mapping resolution and the phenotype sensitivity to endogenous and exogenous androgen exposure, a promising candidate for Gct4 identity is the androgen receptor (Ar) gene. We explored the mechanism of allelic variation for Ar between SWR (low penetrance allele) and SJL/Bm (SJL) (moderate penetrance allele) using an SWR.SJL-X congenic strain resource and a quantitative gene expression method. We report the low GC tumor penetrance allele of the SWR strain correlates with significantly reduced Ar transcript levels in the female ovary at the pubertal transition.


Subject(s)
Epistasis, Genetic , Granulosa Cell Tumor/genetics , Ovarian Neoplasms/genetics , X Chromosome , Animals , Epigenesis, Genetic , Female , Gene Expression Regulation , Genetic Predisposition to Disease , Granulosa Cell Tumor/pathology , Male , Mice , Mice, Inbred Strains , Ovarian Neoplasms/pathology , Ovary/pathology , Ovary/physiology , Penetrance , Receptors, Androgen/genetics
4.
Mamm Genome ; 24(1-2): 63-71, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23179634

ABSTRACT

The spontaneous development of juvenile-onset, ovarian granulosa cell (GC) tumors in the SWR/Bm (SWR) inbred mouse strain is a model for juvenile-type GC tumors that appear in infants and young girls. GC tumor susceptibility is supported by multiple Granulosa cell tumor (Gct) loci, but the Gct1 locus on Chr 4 derived from SWR strain background is fundamental for GC tumor development and uniquely responsive to the androgenic precursor dehydroepiandrosterone (DHEA). To resolve the location of Gct1 independently from other susceptibility loci, Gct1 was isolated in a congenic strain that replaces the distal segment of Chr 4 in SWR mice with a 47 × 10(6)-bp genomic segment from the Castaneus/Ei (CAST) strain. SWR females homozygous for the CAST donor segment were confirmed to be resistant to DHEA- and testosterone-induced GC tumorigenesis, indicating successful exchange of CAST alleles (Gct1 ( CA )) for SWR alleles (Gct1 ( SW )) at this tumor susceptibility locus. A series of nested, overlapping, congenic sublines was created to fine-map Gct1 based on GC tumor susceptibility under the influence of pubertal DHEA treatment. Twelve informative lines have resolved the Gct1 locus to a 1.31 × 10(6)-bp interval on mouse Chr 4, a region orthologous to human Chr 1p36.22.


Subject(s)
Carrier Proteins/genetics , Chromosome Mapping , Granulosa Cell Tumor/genetics , Alleles , Androgens , Animals , Carrier Proteins/metabolism , Cell Cycle Proteins , Cell Line, Tumor , Cell Transformation, Neoplastic/chemically induced , Dehydroepiandrosterone/pharmacology , Disease Models, Animal , Disease Susceptibility , Female , Genetic Loci , Genotype , Granulosa Cell Tumor/pathology , Humans , Mice , Mice, Inbred Strains , Phenotype , Testosterone/metabolism
5.
Endocr Relat Cancer ; 14(2): 369-79, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17639051

ABSTRACT

The reproductive hormone environment is an important influence upon spontaneous ovarian granulosa cell (GC) tumor development in genetically susceptible (SWR x SWXJ-9) F1 female mice: androgenic support during puberty stimulates tumorigenesis, while exposure to 17beta-estradiol (E(2)) suppresses tumor initiation. We sought to determine whether gonadotropic stimulation was sufficient to initiate GC tumors in a grafted model system, and to determine the potential for dietary isoflavones (genistein and daidzein) as alternatives to E(2) for tumor chemoprevention in vivo. Isolated ovaries from pre-pubertal (SWR x SWXJ-9) F1 females were transferred to the kidney capsule of host mice homozygous for the hypogonadal (hpg/hpg) and severe combined immunodeficiency (scid/scid) mutations. CB17; HPG-Prkdc(scid) Gnrh1(hpg)/Bm host mice received either follicle-stimulating hormone (FSH), or a functional analog for LH human chorionic gonadotropin for 2 consecutive weeks, at which time the ovary grafts were examined for evidence of tumor initiation. LH analog administration, but not FSH, initiated GC tumorigenesis in the graft system, suggesting that the LH surge at puberty initiates GC tumor development in genetically susceptible female mice. To assess the chemopreventive potential of phytoestrogens, GC tumor frequency was compared between (SWR x SWXJ-9) F1 females reared on an isoflavone-free diet versus a diet supplemented with 125 mug/g each of the isoflavones daidzein and genistein. It was observed that (SWR x SWXJ-9) F1 females reared on isoflavone-supplemented diet maintained significantly higher GC tumor frequency (22%) than females reared on isoflavone-free diet (11%), and that non-tumor-bearing siblings reared on the isoflavones had significantly increased ovarian weight, indicative of an overall stimulation of the reproductive hormone axis. The stimulation of GC tumorigenesis by isoflavones, which contrasts with the chemopreventive action of E(2) (2.5 mg/kg) administration during pubertal maturation, may result from general stimulation of ovarian growth, and the inability of the genistein and daidzein supplements to suppress LH secretion.


Subject(s)
Cell Transformation, Neoplastic/chemically induced , Chorionic Gonadotropin/toxicity , Granulosa Cell Tumor/chemically induced , Isoflavones/toxicity , Ovarian Neoplasms/chemically induced , Animals , Cell Transformation, Neoplastic/drug effects , Chorionic Gonadotropin/administration & dosage , Diet , Disease Models, Animal , Estradiol/administration & dosage , Female , Follicle Stimulating Hormone/administration & dosage , Genistein/administration & dosage , Genistein/toxicity , Granulosa Cell Tumor/pathology , Granulosa Cell Tumor/prevention & control , Isoflavones/administration & dosage , Mice , Mice, Mutant Strains , Ovarian Neoplasms/pathology , Ovarian Neoplasms/prevention & control
6.
Photodiagnosis Photodyn Ther ; 3(4): 227-33, 2006 Dec.
Article in English | MEDLINE | ID: mdl-25046987

ABSTRACT

BACKGROUND: Male transgenic mice expressing the human RAS gene on an FVB strain background develop adenocarcinoma of the breast between 7 and 8 weeks of age. We have utilized this mammary tumour model to investigate apoptotic responses following photodynamic therapy (PDT) with a chlorin-based, water-soluble photosensitizer. METHODS: Detection of apoptosis was accomplished by use of the antibody M30 against a neo-epitope of caspase-cleaved cytokeratin 18 that becomes available at an early stage of the apoptotic cascade. Mice bearing multiple tumours were injected with the photosensitizer intraperitoneally, and following a drug-light interval of 96h, 40J/cm(2) of 652nm laser light was applied to one tumour per animal, while the other tumours were protected from light to serve as host controls. The M30 antibody was used for standard immunohistochemistry of tumour sections and flow cytometric detection of epitope expression coupled to cell cycle analysis in tumour cell populations retrieved from paraffin blocks. RESULTS: M30 staining was significantly increased within 2h following light treatment and persisted until 96h after treatment. Flow cytometric analysis for the S-phase fraction (SPF) of tumour cells post-PDT showed a substantial decrease in SPF at 2h post PDT, and recovery of SPF within 96h. CONCLUSIONS: Cytokeratin 18 cleavage seems to be both an early and ongoing event during the cellular response to PDT. Calculating the M30/SPF ratio at both 2h and 96h suggested distinct cellular dynamics at early and late time points, and we propose the M30/SPF ratio as a tumour dynamic index (TDI) to monitor events post PDT.

7.
Cancer Res ; 65(4): 1259-64, 2005 Feb 15.
Article in English | MEDLINE | ID: mdl-15735010

ABSTRACT

The spontaneous development of juvenile-onset ovarian granulosa cell tumors in mice of the SWXJ-9 recombinant inbred strain is a model for juvenile-type granulosa cell tumors that appear in very young girls. To expedite gene discovery in this mouse model of childhood cancer, we did a gene mapping study with the SWXJ-9 recombinant inbred strain and the evolutionarily divergent Mus musculus castaneus (CAST/Ei) strain as a mapping partner. Our mapping strategy focused on autosomal determinants of susceptibility with a backcross scheme that exploited a paternal, parent-of-origin effect for a X-linked gene (Gct4) that strongly supports granulosa cell tumor development. Of 1,968 backcross females examined, we detected 81 granulosa cell tumor-bearing animals and compared their allelic inheritance patterns to non-tumor-bearing siblings in a case-control analysis. The results of our study have confirmed an important locus on mouse chromosome (Chr) 4 (Gct1) and have revealed new loci for granulosa cell tumor susceptibility (Gct7-Gct9) on Chrs 1, 2, and 13 with susceptibility alleles contributed by the SWXJ-9 progenitor. Two novel gene-gene interactions supportive for granulosa cell tumor development were also observed between loci on Chrs 17 and 18 and loci on Chrs 2 and 10. Our data substantiate the evidence that Gct1 on Chr 4 is a fundamental oncogene for granulosa cell tumorigenesis in mice and has identified additional interacting autosomal loci that support tumor development.


Subject(s)
Cell Transformation, Neoplastic/genetics , Granulosa Cell Tumor/genetics , Ovarian Neoplasms/genetics , Animals , Chromosome Mapping , Chromosomes, Mammalian/genetics , Disease Models, Animal , Female , Genetic Predisposition to Disease , Inbreeding , Mice
8.
Cancer Res ; 63(23): 8197-202, 2003 Dec 01.
Article in English | MEDLINE | ID: mdl-14678975

ABSTRACT

SWR/Bm (SWR) female mice spontaneously develop early-onset ovarian granulosa cell (GC) tumors that can progress to metastatic carcinoma and thus provide a model system for human, juvenile-type GC tumors. In SWR mice, GC tumor susceptibility is an inherited, polygenic trait that appears at a low frequency. A dramatic increase in tumor frequency occurs when the autosomal SWR genetic complement is combined with the X-linked Gct4 allele of the mouse strain SJL/Bm (SJL). The modifier effect of the SJL Gct4 allele (Gct4(J)) also shows a strong parent-of-origin effect, occurring only when the Gct4(J) allele is paternally inherited. To genetically localize Gct4, we generated seven congenic mouse strains (SWR.SJL-X1 through -X7) that contained a defined segment of the SJL X chromosome (Chr) on the SWR autosomal strain background and mapped Gct4 to a 3 cM region. To better define the location of Gct4, we created an additional congenic strain (SWR.CAST-X) that contains most of the genetically polymorphic Chr X from the strain CAST/Ei. From crosses of the SWR.CAST-X and SWR.SJL-X congenic strains, we derived males carrying unique combinations of SJL-X and CAST-X segments. Progeny testing subsequently revealed a second SJL-derived, GC tumor frequency modifier gene, Gct6, located 6.5 cM distal to Gct4 on Chr X. In summary, we have mapped two modifier genes on the mouse Chr X that cause high-frequency, juvenile-type GC tumor development in female mice. The identity of these genes will provide a solid foundation for determination of tumor susceptibility genes in human cases of juvenile-type GC tumors.


Subject(s)
Genetic Diseases, X-Linked/genetics , Granulosa Cell Tumor/genetics , Oncogenes/genetics , Ovarian Neoplasms/genetics , X Chromosome/genetics , Animals , Chromosome Mapping/methods , Female , Genetic Predisposition to Disease , Inbreeding , Male , Mice , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...