Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Dev Neurosci ; 82(8): 772-788, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36129623

ABSTRACT

Urea cycle disorders (UCD) are a group of genetic diseases caused by deficiencies in the enzymes and transporters involved in the urea cycle. The impairment of the cycle results in ammonia accumulation, leading to neurological dysfunctions and poor outcomes to affected patients. The aim of this study is to investigate and describe UCD patients' principal clinical and biochemical presentations to support professionals on urgent diagnosis and quick management, aiming better outcomes for patients. We explored medical records of 30 patients diagnosed in a referral center from Brazil to delineate UCD clinical and biochemical profile. Patients demonstrated a range of signs and symptoms, such as altered levels of consciousness, acute encephalopathy, seizures, progressive loss of appetite, vomiting, coma, and respiratory distress, in most cases combined with high levels of ammonia, which is an immediate biomarker, leading to a UCD suspicion. The most prevalent UCD detected were ornithine transcarbamylase deficiency, followed by citrullinemia type 1, hyperargininemia, carbamoyl phosphate synthase 1 deficiency, and argininosuccinic aciduria. Clinical symptoms were highly severe, being the majority developmental and neurological disabilities, with 20% of death rate. Laboratory analysis revealed high levels of ammonia (mean ± SD: 860 ± 470 µmol/L; reference value: ≤80 µmol/L), hypoglycemia, metabolic acidosis, and high excretion of orotic acid in the urine (except in carbamoyl phosphate synthetase 1 [CPS1] deficiency). We emphasize the need of urgent identification of UCD clinical and biochemical conditions, and immediate measurement of ammonia, to enable the correct diagnosis and increase the chances of patients' survival, minimizing neurological and psychomotor damage caused by hepatic encephalopathy.


Subject(s)
Hepatic Encephalopathy , Hyperammonemia , Ornithine Carbamoyltransferase Deficiency Disease , Urea Cycle Disorders, Inborn , Humans , Hyperammonemia/complications , Hyperammonemia/diagnosis , Hyperammonemia/genetics , Hepatic Encephalopathy/complications , Hepatic Encephalopathy/diagnosis , Ammonia , Urea Cycle Disorders, Inborn/complications , Urea Cycle Disorders, Inborn/diagnosis , Urea Cycle Disorders, Inborn/genetics , Ornithine Carbamoyltransferase Deficiency Disease/complications , Ornithine Carbamoyltransferase Deficiency Disease/diagnosis , Ornithine Carbamoyltransferase Deficiency Disease/genetics
2.
Metab Brain Dis ; 36(2): 205-212, 2021 02.
Article in English | MEDLINE | ID: mdl-33064266

ABSTRACT

Glutaric aciduria type 1 (GA-1) is a rare but treatable inherited disease caused by deficiency of glutaryl-CoA dehydrogenase activity due to GCDH gene mutations. In this study, we report 24 symptomatic GA-1 Brazilian patients, and present their clinical, biochemical, and molecular findings. Patients were diagnosed by high levels of glutaric and/or 3-hydroxyglutaric and glutarylcarnitine. Diagnosis was confirmed by genetic analysis. Most patients had the early-onset severe form of the disease and the main features were neurological deterioration, seizures and dystonia, usually following an episode of metabolic decompensation. Despite the early symptomatology, diagnosis took a long time for most patients. We identified 13 variants in the GCDH gene, four of them were novel: c.91 + 5G > A, c.167T > G, c.257C > T, and c.10A > T. The most common mutation was c.1204C > T (p.R402W). Surprisingly, the second most frequent mutation was the new mutation c.91 + 5G > A (IVS1 ds G-A + 5). Our results allowed a complete characterization of the GA-1 Brazilian patients. Besides, they expand the mutational spectrum of GA-1, with the description of four new mutations. This work reinforces the importance of awareness of GA-1 among doctors in order to allow early diagnosis and treatment in countries like Brazil where the disease has not been included in newborn screening programs.


Subject(s)
Amino Acid Metabolism, Inborn Errors/diagnosis , Brain Diseases, Metabolic/diagnosis , Glutaryl-CoA Dehydrogenase/deficiency , Glutaryl-CoA Dehydrogenase/genetics , Mutation , Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases, Metabolic/genetics , Brazil , DNA Mutational Analysis , Female , Humans , Infant , Infant, Newborn , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...