Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Braz J Microbiol ; 52(4): 2193-2204, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34536217

ABSTRACT

Enzyme activities (EAs) and the FERTBIO sample concept have been increasingly adopted as a novel approach to estimate the soil quality in Brazil. However, the performance of this strategy in sandy soils of the Cerrado biome remains unclear. During 2 years, in a Cerrado's sandy soil, the short-term effects of ten different cropping systems (conventional tillage or no-tillage associated with monoculture, rotations, and/or successions) on the activities of ß-glucosidase, acid phosphatase, and arylsulfatase were studied. Issues related to annual variability and the feasibility of using the FERTBIO sample concept for soil enzymes activities were also evaluated. Soil samples were collected at three different depths (0-10 cm, 10-20 cm, and 20-40 cm) in March 2017 and February 2018. Five years since the beginning of the experiment, the presence of cover crops and no-till promoted improvements in EAs evidencing the importance of regenerative management practices for the sustainability of agroecosystems in sandy soils. Regardless of the cropping systems and depths evaluated, soil organic carbon and EAs showed low temporal variation during the 2 years of monitoring. Our results also showed that it is possible to use the FERTBIO sample concept for the Quartzipsament soils of Western Bahia, Brazil.


Subject(s)
Agriculture , Enzymes , Sand , Soil Microbiology , Brazil , Carbon/analysis , Enzymes/metabolism , Sand/microbiology , Time Factors
2.
Braz J Microbiol ; 52(4): 2215-2232, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34590295

ABSTRACT

Brazil has a long history of research with rhizobia and plant growth-promoting rhizobacteria (PGPR). Currently, the use of bio-based products in Brazil, containing microorganisms that are effective in promoting plant growth through various mechanisms, is already a consolidated reality for the cultivation of several crops of agricultural interest. This is due to the excellent results obtained over many years of research, which contributed to reinforce the use of rhizobia and PGPR by farmers. The high quality of the products offered, containing elite strains, allows the reduction and prevention in the use of mineral fertilization, contributing to low-cost and sustainable agriculture. Currently, research has turned its efforts in the search for new products that further increase the efficiency of those already available on the market and for new formulations or inoculation strategies that contribute to greater productivity and efficiency of these products. In this review, the history of biological products for main crops of agricultural interest and the new biotechnologies and research available in the agricultural market are discussed.


Subject(s)
Agriculture , Biotechnology , Fertilizers , Agriculture/trends , Biotechnology/trends , Brazil
3.
Syst Appl Microbiol ; 44(1): 126152, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33276286

ABSTRACT

Previous studies have recognized South and Central/Latin American mimosoid legumes in the genera Mimosa, Piptadenia and Calliandra as hosts for various nodulating Paraburkholderia species. Several of these species have been validly named in the last two decades, e.g., P. nodosa, P. phymatum, P. diazotrophica, P. piptadeniae, P. ribeironis, P. sabiae and P. mimosarum. There are still, however, a number of diverse Paraburkholderia strains associated with these legumes that have an unclear taxonomic status. In this study, we focus on 30 of these strains which originate from the root nodules of Brazilian and Mexican Mimosa species. They were initially identified as P. tuberum and subsequently placed into a symbiovar (sv. mimosae) based on their host preferences. A polyphasic approach for the delineation of these strains was used, consisting of genealogical concordance analysis (using atpD, gyrB, acnA, pab and 16S rRNA gene sequences), together with comparisons of Average Nucleotide Identity (ANI), DNA G+C content ratios and phenotypic characteristics with those of the type strains of validly named Paraburkholderia species. Accordingly, these 30 strains were delineated into two distinct groups, of which one is conspecific with 'P. atlantica' CNPSo 3155T and the other new to Science. We propose the name Paraburkholderia youngii sp. nov. with type strain JPY169T (= LMG 31411T; SARCC751T) for this novel species.


Subject(s)
Burkholderiaceae/classification , Mimosa/microbiology , Phylogeny , Root Nodules, Plant/microbiology , Bacterial Typing Techniques , Base Composition , Brazil , Burkholderiaceae/isolation & purification , DNA, Bacterial/genetics , Genes, Bacterial , Mexico , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Symbiosis
4.
Front Microbiol ; 11: 553223, 2020.
Article in English | MEDLINE | ID: mdl-33519722

ABSTRACT

Semiarid regions are apparently low biodiversity environments; however, these environments may host a phylogenetically diverse microbial community associated with plants. Their microbial inhabitants are often recruited to withstand stressful settings and improve plant growth under harsh conditions. Thus, plant-associated microorganisms isolated from semiarid and seasonally dry environments will be detailed in the present review, focusing on plant growth promotion potential and the microbial ability to alleviate plant abiotic stress. Initially, we explored the role of microbes from dry environments around the world, and then, we focused on seasonally dry Brazilian biomes, the Caatinga and the Cerrado. Cultivable bacteria from semiarid and seasonally dry environments have demonstrated great plant growth promotion traits such as plant hormone production, mobilization of insoluble nutrients, and mechanisms related to plant abiotic stress alleviation. Several of these isolates were able to improve plant growth under stressful conditions commonly present in typical semiarid regions, such as high salinity and drought. Additionally, we highlight the potential of plants highly adapted to seasonal climates from the Caatinga and Cerrado biomes as a suitable pool of microbial inoculants to maintain plant growth under abiotic stress conditions. In general, we point out the potential for the exploitation of new microbial inoculants from plants growing in dry environments to ensure a sustainable increase in agricultural productivity in a future climate change scenario.

5.
Braz J Microbiol ; 50(4): 1147-1148, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31414367

ABSTRACT

The original version of this article unfortunately contained a mistake. The presentation of Fig. 1was incorrect. The correct version is given below.

6.
Braz J Microbiol ; 50(4): 905-914, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31236871

ABSTRACT

Biological nitrogen fixation (BNF) with the soybean crop probably represents the major sustainable technology worldwide, saving billions of dollars in N fertilizers and decreasing water pollution and the emission of greenhouse gases. Accordingly, the identification of strains occupying nodules under field conditions represents a critical step in studies that are aimed at guaranteeing increased BNF contribution. Current methods of identification are mostly based on serology, or on DNA profiles. However, the production of antibodies is restricted to few laboratories, and to obtain DNA profiles of hundreds of isolates is costly and time-consuming. Conversely, the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS technique might represent a golden opportunity for replacing serological and DNA-based methods. However, MALDI-TOF databases of environmental microorganisms are still limited, and, most importantly, there are concerns about the discrimination of protein profiles at the strain level. In this study, we investigated four soybean rhizobial strains carried in commercial inoculants used in over 35 million hectares in Brazil and also in other countries of South America and Africa. A supplementary MALDI-TOF database with the protein profiles of these rhizobial strains was built and allowed the identification of unique profiles statistically supported by multivariate analysis and neural networks. To test this new database, the nodule occupancy by Bradyrhizobium strains in symbiosis with soybean was characterized in a field experiment and the results were compared with serotyping of bacteria by immuno-agglutination. The results obtained by both techniques were highly correlated and confirmed the viability of using the MALDI-TOF MS technique to effectively distinguish bacteria at the strain level.


Subject(s)
Agricultural Inoculants/isolation & purification , Bradyrhizobium/isolation & purification , Glycine max/microbiology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Agricultural Inoculants/chemistry , Agricultural Inoculants/classification , Agricultural Inoculants/physiology , Bradyrhizobium/chemistry , Bradyrhizobium/classification , Bradyrhizobium/physiology , Brazil , Nitrogen Fixation , Glycine max/physiology , Symbiosis
7.
Genes (Basel) ; 9(8)2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30071618

ABSTRACT

Burkholderia sensu lato is a large and complex group, containing pathogenic, phytopathogenic, symbiotic and non-symbiotic strains from a very wide range of environmental (soil, water, plants, fungi) and clinical (animal, human) habitats. Its taxonomy has been evaluated several times through the analysis of 16S rRNA sequences, concantenated 4⁻7 housekeeping gene sequences, and lately by genome sequences. Currently, the division of this group into Burkholderia, Caballeronia, Paraburkholderia, and Robbsia is strongly supported by genome analysis. These new genera broadly correspond to the various habitats/lifestyles of Burkholderia s.l., e.g., all the plant beneficial and environmental (PBE) strains are included in Paraburkholderia (which also includes all the N2-fixing legume symbionts) and Caballeronia, while most of the human and animal pathogens are retained in Burkholderia sensu stricto. However, none of these genera can accommodate two important groups of species. One of these includes the closely related Paraburkholderia rhizoxinica and Paraburkholderia endofungorum, which are both symbionts of the fungal phytopathogen Rhizopus microsporus. The second group comprises the Mimosa-nodulating bacterium Paraburkholderia symbiotica, the phytopathogen Paraburkholderia caryophylli, and the soil bacteria Burkholderia dabaoshanensis and Paraburkholderia soli. In order to clarify their positions within Burkholderia sensu lato, a phylogenomic approach based on a maximum likelihood analysis of conserved genes from more than 100 Burkholderia sensu lato species was carried out. Additionally, the average nucleotide identity (ANI) and amino acid identity (AAI) were calculated. The data strongly supported the existence of two distinct and unique clades, which in fact sustain the description of two novel genera Mycetohabitans gen. nov. and Trinickia gen. nov. The newly proposed combinations are Mycetohabitans endofungorum comb. nov., Mycetohabitansrhizoxinica comb. nov., Trinickia caryophylli comb. nov., Trinickiadabaoshanensis comb. nov., Trinickia soli comb. nov., and Trinickiasymbiotica comb. nov. Given that the division between the genera that comprise Burkholderia s.l. in terms of their lifestyles is often complex, differential characteristics of the genomes of these new combinations were investigated. In addition, two important lifestyle-determining traits-diazotrophy and/or symbiotic nodulation, and pathogenesis-were analyzed in depth i.e., the phylogenetic positions of nitrogen fixation and nodulation genes in Trinickia via-à-vis other Burkholderiaceae were determined, and the possibility of pathogenesis in Mycetohabitans and Trinickia was tested by performing infection experiments on plants and the nematode Caenorhabditis elegans. It is concluded that (1) T. symbiotica nif and nod genes fit within the wider Mimosa-nodulating Burkholderiaceae but appear in separate clades and that T. caryophyllinif genes are basal to the free-living Burkholderia s.l. strains, while with regard to pathogenesis (2) none of the Mycetohabitans and Trinickia strains tested are likely to be pathogenic, except for the known phytopathogen T. caryophylli.

8.
Genome Announc ; 6(4)2018 Jan 25.
Article in English | MEDLINE | ID: mdl-29371365

ABSTRACT

Pantoea ananatis 1.38 is a strain isolated from the rhizosphere of irrigated rice in southern Spain. Its genome was estimated at 4,869,281 bp, with 4,644 coding sequences (CDSs). The genome encompasses several CDSs related to plant growth promotion, such as that for siderophore metabolism, and virulence genes characteristic of pathogenic Pantoea spp. are absent.

9.
Antonie Van Leeuwenhoek ; 107(4): 935-49, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25616909

ABSTRACT

Ultramafic soils are characterized by high levels of metals, and have been studied because of their geochemistry and its relation to their biological component. This study evaluated soil microbiological functioning (SMF), richness, diversity, and structure of bacterial communities from two ultramafic soils and from a non-ultramafic soil in the Brazilian Cerrado, a tropical savanna. SMF was represented according to simultaneous analysis of microbial biomass C (MBC) and activities of the enzymes ß-glucosidase, acid phosphomonoesterase and arylsulfatase, linked to the C, P and S cycles. Bacterial community diversity and structure were studied by sequencing of 16S rRNA gene clone libraries. MBC and enzyme activities were not affected by high Ni contents. Changes in SMF were more related to the organic matter content of soils (SOM) than to their available Ni. Phylogeny-based methods detected qualitative and quantitative differences in pairwise comparisons of bacterial community structures of the three sites. However, no correlations between community structure differences and SOM or SMF were detected. We believe this work presents benchmark information on SMF, diversity, and structure of bacterial communities for a unique type of environment within the Cerrado biome.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Biota , Soil Microbiology , Arylsulfatases/analysis , Bacteria/genetics , Bacteria/growth & development , Biomass , Brazil , Cluster Analysis , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Grassland , Molecular Sequence Data , Phosphoric Monoester Hydrolases/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Tropical Climate , beta-Glucosidase/analysis
10.
Int J Syst Evol Microbiol ; 63(Pt 2): 435-441, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22467155

ABSTRACT

Five strains, JPY461(T), JPY359, JPY389, DPU-3 and STM4206 were isolated from nitrogen-fixing nodules on the roots of Mimosa spp. and their taxonomic positions were investigated using a polyphasic approach. All five strains grew at 15-40 °C (optimum, 30-37 °C), at pH 4.0-8.0 (optimum, pH 6.0-7.0) and with 0-1 % (w/v) NaCl [optimum, 0 % (w/v)]. On the basis of 16S rRNA gene sequence analysis, a representative strain (JPY461(T)) showed 97.2 % sequence similarity to the closest related species Burkholderia acidipaludis SA33(T), a similarity of 97.2 % to Burkholderia terrae KMY02(T), 97.1 % to Burkholderia phymatum STM815(T) and 97.1 % to Burkholderia hospita LMG 20598(T). The predominant fatty acids of the five novel strains were summed feature 2 (comprising C(16 : 1) iso I and/or C(14 : 0) 3-OH), summed feature 3 (comprising C(16 : 1)ω7c and/or C(16 : 1)ω6c), C(16 : 0) , C(16 : 0) 3-OH, C(17 : 0) cyclo, C(18 : 1)ω7c and C(19 : 0) cyclo ω8c. The major isoprenoid quinone was Q-8 and the DNA G+C content of the strains was 63.0-65.0 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified aminophospholipid, an unidentified aminolipid and several unidentified phospholipids. The DNA-DNA relatedness of the novel strain with respect to recognized species of the genus Burkholderia was less than 54 %. On the basis of 16S rRNA and recA gene sequence similarities, chemotaxonomic and phenotypic data, the five strains represent a novel species in the genus Burkholderia, for which the name Burkholderia diazotrophica sp. nov. is proposed with the type strain, JPY461(T) ( = LMG 26031(T) = BCRC 80259(T) = KCTC 23308(T)).


Subject(s)
Burkholderia/classification , Mimosa/microbiology , Phylogeny , Root Nodules, Plant/microbiology , Bacterial Typing Techniques , Base Composition , Brazil , Burkholderia/genetics , Burkholderia/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/analysis , Genes, Bacterial , Molecular Sequence Data , Nucleic Acid Hybridization , Phospholipids/analysis , Quinones/analysis , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...