Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37514302

ABSTRACT

The literature is full of studies reporting environmental and health issues related to using traditional pesticides in food production and storage. Fortunately, alternatives have arisen in the last few decades, showing that organic agriculture is possible and economically feasible. And in this scenario, fungi may be helpful. In the natural environment, when associated with plants, these microorganisms offer plant-growth-promoting molecules, facilitate plant nutrient uptake, and antagonize phytopathogens. It is true that fungi can also be phytopathogenic, but even they can benefit agriculture in some way-since pathogenicity is species-specific, these fungi are shown to be useful against weeds (as bioherbicides). Finally, plant-associated yeasts and molds are natural biofactories, and the metabolites they produce while dwelling in leaves, flowers, roots, or the rhizosphere have the potential to be employed in different industrial activities. By addressing all these subjects, this manuscript comprehensively reviews the biotechnological uses of plant-associated fungi and, in addition, aims to sensitize academics, researchers, and investors to new alternatives for healthier and more environmentally friendly production processes.

2.
FEMS Yeast Res ; 21(6)2021 09 22.
Article in English | MEDLINE | ID: mdl-34477865

ABSTRACT

First-generation ethanol (E1G) is based on the fermentation of sugars released from saccharine or starch sources, while second-generation ethanol (E2G) is focused on the fermentation of sugars released from lignocellulosic feedstocks. During the fractionation process to release sugars from hemicelluloses (mainly xylose), some inhibitor compounds are released hindering fermentation. Thus, the biggest challenge of using hemicellulosic hydrolysate is selecting strains and processes able to efficiently ferment xylose and tolerate inhibitors. With the aim of diluting inhibitors, sugarcane molasses (80% of sucrose content) can be mixed to hemicellulosic hydrolysate in an integrated E1G-E2G process. Cofermentations of xylose and sucrose were evaluated for the native xylose consumer Spathaspora passalidarum and a recombinant Saccharomyces cerevisiae strain. The industrial S. cerevisiae strain CAT-1 was modified to overexpress the XYL1, XYL2 and XKS1 genes and a mutant ([4-59Δ]HXT1) version of the low-affinity HXT1 permease, generating strain MP-C5H1. Although S. passalidarum showed better results for xylose fermentation, this yeast showed intracellular sucrose hydrolysis and low sucrose consumption in microaerobic conditions. Recombinant S. cerevisiae showed the best performance for cofermentation, and a batch strategy at high cell density in bioreactor achieved unprecedented results of ethanol yield, titer and volumetric productivity in E1G-E2G production process.


Subject(s)
Saccharomyces cerevisiae , Saccharomycetales , Ethanol , Fermentation , Saccharomyces cerevisiae/genetics , Saccharomycetales/genetics , Xylose
SELECTION OF CITATIONS
SEARCH DETAIL
...