Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Hypertens ; 42(6): 984-999, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38690903

ABSTRACT

Nox1 signaling is a causal key element in arterial hypertension. Recently, we identified protein disulfide isomerase A1 (PDI) as a novel regulatory protein that regulates Nox1 signaling in VSMCs. Spontaneously hypertensive rats (SHR) have increased levels of PDI in mesenteric resistance arteries compared with Wistar controls; however, its consequences remain unclear. Herein, we investigated the role of PDI in mediating Nox1 transcriptional upregulation and its effects on vascular dysfunction in hypertension. We demonstrate that PDI contributes to the development of hypertension via enhanced transcriptional upregulation of Nox1 in vascular smooth muscle cells (VSMCs). We show for the first time that PDI sulfenylation by hydrogen peroxide contributes to EGFR activation in hypertension via increased shedding of epidermal growth factor-like ligands. PDI also increases intracellular calcium levels, and contractile responses induced by ANG II. PDI silencing or pharmacological inhibition in VSMCs significantly decreases EGFR activation and Nox1 transcription. Overexpression of PDI in VSMCs enhances ANG II-induced EGFR activation and ATF1 translocation to the nucleus. Mechanistically, PDI increases ATF1-induced Nox1 transcription and enhances the contractile responses to ANG II. Herein we show that ATF1 binding to Nox1 transcription putative regulatory regions is augmented by PDI. Altogether, we provide evidence that HB-EGF in SHR resistance vessels promotes the nuclear translocation of ATF1, under the control of PDI, and thereby induces Nox1 gene expression and increases vascular reactivity. Thus, PDI acts as a thiol redox-dependent enhancer of vascular dysfunction in hypertension and could represent a novel therapeutic target for the treatment of this disease.


Subject(s)
Hypertension , Muscle, Smooth, Vascular , NADPH Oxidase 1 , Protein Disulfide-Isomerases , Rats, Inbred SHR , Up-Regulation , Animals , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/genetics , NADPH Oxidase 1/metabolism , NADPH Oxidase 1/genetics , Hypertension/physiopathology , Hypertension/genetics , Hypertension/metabolism , Rats , Muscle, Smooth, Vascular/metabolism , Male , Myocytes, Smooth Muscle/metabolism , ErbB Receptors/metabolism , ErbB Receptors/genetics , Rats, Wistar , Transcription, Genetic
2.
Sci Rep ; 6: 34581, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27698473

ABSTRACT

The reactive-oxygen-species-(ROS)-generating-enzyme Nox2 is essential for leukocyte anti-microbial activity. However its role in cellular redox homeostasis and, consequently, in modulating intracellular signaling pathways remains unclear. Herein, we show Nox2 activation favors thioredoxin-1 (TRX-1)/p40phox interaction, which leads to exclusion of TRX-1 from the nucleus. In contrast, the genetic deficiency of Nox2 or its pharmacological inhibition with apocynin (APO) results in reductive stress after lipopolysaccharide-(LPS)-cell stimulation, which causes nuclear accumulation of TRX-1 and enhanced transcription of inflammatory mediators through nuclear-factor-(NF)-κB. The NF-κB overactivation is prevented by TRX-1 oxidation using inhibitors of thioredoxin reductase-1 (TrxR-1). The Nox2/TRX-1/NF-κB intracellular signaling pathway is involved in the pathophysiology of chronic granulomatous disease (CGD) and sepsis. In fact, TrxR-1 inhibition prevents nuclear accumulation of TRX-1 and LPS-stimulated hyperproduction of tumor-necrosis-factor-(TNF)-α by monocytes and neutrophils purified from blood of CGD patients, who have deficient Nox2 activity. TrxR-1 inhibitors, either lanthanum chloride (LaCl3) or auranofin (AUR), also increase survival rates of mice undergoing cecal-ligation-and-puncture-(CLP). Therefore, our results identify a hitherto unrecognized Nox2-mediated intracellular signaling pathway that contributes to hyperinflammation in CGD and in septic patients. Additionally, we suggest that TrxR-1 inhibitors could be potential drugs to treat patients with sepsis, particularly in those with CGD.


Subject(s)
Acetophenones/pharmacology , NADPH Oxidase 2/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Thioredoxins/metabolism , Animals , Granulomatous Disease, Chronic/chemically induced , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/metabolism , Granulomatous Disease, Chronic/pathology , Lipopolysaccharides/toxicity , Male , Mice , Mice, Knockout , NADPH Oxidase 2/genetics , NF-kappa B/genetics , Oxidation-Reduction/drug effects , Sepsis/chemically induced , Sepsis/genetics , Sepsis/metabolism , Sepsis/pathology , Thioredoxins/genetics
3.
Arch Oral Biol ; 54(7): 642-50, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19414171

ABSTRACT

OBJECTIVE: Low molecular weight protein tyrosine phosphatases (LMW-PTPs) are a family of enzymes strongly involved in the regulation of cell growth and differentiation. Since there is no information concerning the relationship between osteoblastic differentiation and LMW-PTP expression/activity, we investigated its involvement during human osteoblast-like cells (hFOB 1.19) differentiation. It is known that LMW-PTP is regulated by an elegant redox mechanism, so we also observed how the osteoblastic differentiation affected the reduced glutathione levels. DESIGN: hFOB 1.19 cells were cultured in DMEM/F12 up to 35 days. The osteoblast phenotype acquisition was monitored by measuring alkaline phosphatase activity and mineralized nodule formation by Von Kossa staining. LMW-PTP activity and expression were measured using the p-nitrophenylphosphate as substrate and Western blotting respectively. Crystal violet assay determined the cell number in each experimental point. Glutathione level was determined by both HPLC and DNTB assays. RESULTS: LMW-PTP modulation was coincident with the osteoblastic differentiation biomarkers, such as alkaline phosphatase activity and presence of nodules of mineralization in vitro. Likewise LMW-PTP, the reduced glutathione-dependent microenvironment was modulated during osteoblastic differentiation. During this process, LMW-PTP expression/activity, as well as alkaline phosphatase and glutathione increased progressively up to the 21st day (p < 0.001) of culturing, decreasing thereafter. CONCLUSIONS: Our results clearly suggest that LMW-PTP expression/activity was rigorously modulated during osteoblastic differentiation, possibly in response to the redox status of the cells, since it seems to depend on suitable levels of reduced glutathione. In this way, we pointed out LMW-PTP as an important signaling molecule in osteoblast biology and bone formation.


Subject(s)
Glutathione/metabolism , Osteoblasts/physiology , Protein Tyrosine Phosphatases/metabolism , Proto-Oncogene Proteins/metabolism , Alkaline Phosphatase/analysis , Biomarkers/analysis , Blotting, Western , Calcification, Physiologic/physiology , Calcium Phosphates/analysis , Cell Count , Cell Differentiation/physiology , Cell Line , Cell Proliferation , Chromatography, High Pressure Liquid , Dinitrobenzenes , Glutathione/analysis , Haptens , Humans , Nitrophenols , Organophosphorus Compounds , Oxidation-Reduction , Oxidative Stress/physiology , Phenotype , Protein Tyrosine Phosphatases/analysis , Proto-Oncogene Proteins/analysis , Time Factors
4.
J Mol Histol ; 39(6): 627-34, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18979172

ABSTRACT

Tartrate-resistant acid phosphatase (TRAP) is a well-known marker of osteoclasts and bone resorption. Here we have investigated whether osteoblast-like cells (hFOB 1.19) present TRAP activity and how would be its pattern of expression during osteoblastic differentiation. We also observed how the osteoblastic differentiation affected the reduced glutathione levels. TRAP activity was measured using the p-nitrophenylphosphate substrate. The osteogenic potential of hFOB 1.19 cells was studied by measuring alkaline phosphatase activity and mineralized nodule formation. Oxidative stress was determined by HPLC and DNTB assays. TRAP activity and the reduced glutathione-dependent microenvironment were modulated during osteoblastic differentiation. During this phase, TRAP activity, as well as alkaline phosphatase and glutathione increased progressively up to the 21st day, decreasing thereafter. We demonstrate that TRAP activity is modulated during osteoblastic differentiation, possibly in response to the redox state of the cell, since it seemed to depend on suitable levels of reduced glutathione.


Subject(s)
Acid Phosphatase/metabolism , Cell Differentiation/physiology , Glutathione/metabolism , Isoenzymes/metabolism , Osteoblasts/physiology , Animals , Calcification, Physiologic , Cell Line , Cell Proliferation , Cell Shape , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Humans , Osteoblasts/cytology , Oxidative Stress , Tartrate-Resistant Acid Phosphatase
SELECTION OF CITATIONS
SEARCH DETAIL
...