Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Oxid Med Cell Longev ; 2022: 3046483, 2022.
Article in English | MEDLINE | ID: mdl-35401919

ABSTRACT

Oxidative stress plays a key role in the initiation and progression of metabolic diseases, including obesity. Preventing the accumulation of reactive oxygen species and oxidative damage to macromolecules is a beneficial strategy for reducing comorbidities associated with obesity. Fruits from the Spondias genus are known for their antioxidant activity, but they are not available year-round due to their seasonality. In this context, we investigated the antioxidant activity and identified the chemical constituents of the aqueous extract of the stem bark of Spondias purpurea L. (EBSp). Additionally, we evaluated the effect of EBSp consumption on metabolic parameters in mice with obesity induced by a high-fat diet. Chemical analyses revealed 19 annotated compounds from EBSp, including flavan-3-ols, proanthocyanidins, methoxylated coumarin, and gallic and ellagic acids, besides other phenolic compounds. In vitro, EBSp showed antioxidant activity through the scavenging of the free radicals and the protection of macromolecules against oxidative damage. Cellular assays revealed that EBSp reduced the levels of malondialdehyde produced by erythrocytes exposed to the oxidizing agent AAPH. Flow cytometry studies showed that EBSp reduced reactive oxygen species levels in human peripheral blood mononuclear cells treated with hydrogen peroxide. Obese mice treated with EBSp (400 mg.kg-1) for 60 days showed reduced levels of malondialdehyde in the heart, liver, kidneys, and nervous system. The total cholesterol levels in mice treated with EBSp reached levels similar to those after treatment with the drug simvastatin. Together, the results show that the combination of the different phenolic compounds in S. purpurea L. bark promotes antioxidant effects in vitro and in vivo, resulting in cytoprotection in the context of oxidative stress associated with obesity and a reduction in hypercholesterolemia. From a clinical perspective, the reduction in oxidative stress in obese individuals contributes to the reduction in the emergence of comorbidities associated with this metabolic syndrome.


Subject(s)
Anacardiaceae , Hypercholesterolemia , Anacardiaceae/chemistry , Animals , Antioxidants/metabolism , Diet, High-Fat/adverse effects , Hypercholesterolemia/drug therapy , Leukocytes, Mononuclear/metabolism , Malondialdehyde/metabolism , Mice , Obesity/drug therapy , Oxidative Stress , Phenols/pharmacology , Plant Bark/chemistry , Plant Extracts/analysis , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Reactive Oxygen Species/metabolism
2.
Biochim Biophys Acta Gen Subj ; 1865(9): 129937, 2021 09.
Article in English | MEDLINE | ID: mdl-34052310

ABSTRACT

BACKGROUND: Antimicrobial peptides (AMPs) are molecules with potential application for the treatment of microorganism infections. We, herein, describe the structure, activity, and mechanism of action of RQ18, an α-helical AMP that displays antimicrobial activity against Gram-positive and Gram-negative bacteria, and yeasts from the Candida genus. METHODS: A physicochemical-guided design assisted by computer tools was used to obtain our lead peptide candidate, named RQ18. This peptide was assayed against Gram-positive and Gram-negative bacteria, yeasts, and mammalian cells to determine its selectivity index. The secondary structure and the mechanism of action of RQ18 were investigated using circular dichroism, large unilamellar vesicles, and molecular dynamic simulations. RESULTS: RQ18 was not cytotoxic to human lung fibroblasts, peripheral blood mononuclear cells, red blood cells, or Vero cells at MIC values, exhibiting a high selectivity index. Circular dichroism analysis and molecular dynamic simulations revealed that RQ18 presents varying structural profiles in aqueous solution, TFE/water mixtures, SDS micelles, and lipid bilayers. The peptide was virtually unable to release carboxyfluorescein from large unilamellar vesicles composed of POPC/cholesterol, model that mimics the eukaryotic membrane, indicating that vesicles' net charges and the presence of cholesterol may be related with RQ18 selectivity for bacterial and fungal cell surfaces. CONCLUSIONS: RQ18 was characterized as a membrane-active peptide with dual antibacterial and antifungal activities, without compromising mammalian cells viability, thus reinforcing its therapeutic application. GENERAL SIGNIFICANCE: These results provide further insight into the complex process of AMPs interaction with biological membranes, in special with systems that mimic prokaryotic and eukaryotic cell surfaces.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Cholesterol/pharmacology , Phospholipids/pharmacology , Pore Forming Cytotoxic Proteins/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Candida/drug effects , Cholesterol/chemistry , Escherichia coli/drug effects , Eukaryotic Cells/drug effects , Humans , Microbial Sensitivity Tests , Molecular Dynamics Simulation , Phospholipids/chemistry , Pore Forming Cytotoxic Proteins/chemical synthesis , Pore Forming Cytotoxic Proteins/chemistry , Staphylococcus/drug effects
3.
Food Res Int ; 139: 109836, 2021 01.
Article in English | MEDLINE | ID: mdl-33509461

ABSTRACT

Fruits are widely recognized as sources of biologically active metabolites, such as antioxidant compounds. In this context, fruits commonly consumed in the central Amazonia, especially in its biggest metropolis (Manaus - AM/Brazil), are attractive as potential sources of antioxidant compounds related to biological activities. Most of such fruits are still poorly studied and/or remain unknown outside the Amazon region. Therefore, this study aims to investigate nine fruits (abiu, cubiu, biribá, breadfruit, genipap, peach palm, murici, soursop, and umari) regarding their chemical composition (fixed and volatile), reducing capacity, antioxidant activity, enzyme inhibition, and cytotoxicity. Determination of small organic acids, hydroxycinnamic acids, flavan-3-ols and flavonoid aglycones was done by HPLC-MS/MS, whereas determination of volatile organic compounds (VOCs) was done by HS-SPME/GC-MS. Reducing capacity was determined by the Folin-Ciocalteu method, and antioxidant activities were evaluated by DPPH, ABTS, and H-ORACFL assays. In vitro activities regarding inhibition of enzymes were tested for α-glucosidase, lipase, and α-amylase, and anti-glycation activities were evaluated for methylglyoxal and fructose. Cytotoxicity of fruit extracts was evaluated by cell viability of human fibroblast cell line (MRC-5). A total of 16 antioxidant compounds and 139 VOCs were determined, whose profiles were unique for each studied fruit. Total phenolic contents as well as antioxidant activities found herein were similar or even higher than those reported for several traditional fruits. Some of fruit extracts were able to inhibit α-glucosidase and glycation in methylglyoxal and fructose models, whereas none of them was active for lipase and α-amylase. All of the fruit extracts showed to be non-cytotoxic to MRC-5 cell line.


Subject(s)
Fruit , Malpighiaceae , Antioxidants/pharmacology , Brazil , Humans , Tandem Mass Spectrometry
4.
Pathog Glob Health ; 112(8): 438-447, 2018 12.
Article in English | MEDLINE | ID: mdl-30570384

ABSTRACT

The biological activities and the structural arrangement of adevonin, a novel antimicrobial peptide, were investigated. The trypsin inhibitor ApTI, isolated from Adenanthera pavonina seeds, was used as a template for screening 18-amino acid peptides with predicted antimicrobial activity. Adevonin presented antimicrobial activity and minimum inhibitory concentrations (MIC) ranging from 1.86 to 7.35 µM against both Gram-positive and - negative bacterial strains. Moreover, adevonin exerted time-kill effects within 10 min and both susceptible and drug-resistant bacterial strains were affected by the peptide. In vitro and in vivo assays showed that, at MIC concentration, adevonin did not affect human fibroblasts (MRC-5) viability or Galleria mellonella survival, respectively. Hemolytic activity was observed only at high peptide concentrations. Additionally, nucleic acid efflux assays, gentian violet uptake and time-kill kinetics indicate that the antimicrobial activity of adevonin may be mediated by bacterial membrane damage. Furthermore, molecular dynamic simulation in the presence of SDS micelles and anionic membrane bilayers showed that adevonin acquired a stable α-helix secondary structure. Further studies are encouraged to better understand the mechanism of action of adevonin, as well as to investigate the anti-infective activity of this peptide.


Subject(s)
Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/pharmacology , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Trypsin Inhibitors/pharmacology , Animals , Anti-Infective Agents/toxicity , Antimicrobial Cationic Peptides/toxicity , Biological Assay , Cell Line , Cell Membrane/drug effects , Cell Survival/drug effects , Fabaceae/enzymology , Fibroblasts/drug effects , Fibroblasts/physiology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Hemolysis , Humans , Lepidoptera/drug effects , Microbial Sensitivity Tests , Microbial Viability/drug effects , Recombinant Proteins/toxicity , Survival Analysis , Trypsin Inhibitors/toxicity
5.
Food Res Int ; 109: 112-119, 2018 07.
Article in English | MEDLINE | ID: mdl-29803432

ABSTRACT

Remela de cachorro (Clavija lancifolia Desf.) is an Amazonian native fruit consumed specially in the Purus microregion. Because of its rarity, restricted consumption, and the lack of knowledge about its chemical composition, remela de cachorro fruit was studied in relation to its phenolic and aroma constitution. Using liquid chromatography tandem mass spectrometry (LC-MS/MS), 11 compounds (flavonoids and its glucosides along with organic acids) were tentatively identified by fragmentation patterns. A previously validated method was applied to quantify common antioxidant compounds in the raw pulps, for which kaempferol was the main compound. Gas chromatography mass spectrometry (GC-MS) with headspace solid-phase microextraction (HS-SPME) was employed to assess the aroma composition of remela de cachorro fruit. A total of 27 volatile organic compounds (VOCs) were identified for this fruit, for which benzaldehyde and linalool were the main VOCs. Furthermore, biological activities, such as antioxidant capacity (ABTS, DPPH, and ORAC methods), cytotoxicity, and α-glucosidase and lipase inhibitions of the hydroalcoholic extract of remela de cachorro fruit were evaluated. In vitro biological assays revealed the potential of this fruit as a bioactive food that should be further studied and explored in Amazonian products.


Subject(s)
Antioxidants , Fruit/chemistry , Odorants/analysis , Phenols , Plant Extracts , Primulaceae/chemistry , Antioxidants/analysis , Antioxidants/pharmacology , Brazil , Cell Line, Tumor , Cell Survival/drug effects , Chlorogenic Acid/analysis , Chlorogenic Acid/pharmacology , Flavonoids/analysis , Flavonoids/pharmacology , Glucosides/analysis , Glucosides/pharmacology , Humans , Phenols/analysis , Phenols/pharmacology , Plant Extracts/analysis , Plant Extracts/pharmacology , Reproducibility of Results
6.
Front Pharmacol ; 8: 466, 2017.
Article in English | MEDLINE | ID: mdl-28855870

ABSTRACT

Phytochemical studies are seeking new alternatives to prevent or treat cancer, including different types of leukemias. Campomanesia adamantium, commonly known as guavira or guabiroba, exhibits pharmacological properties including antioxidant, antimicrobial, and antiproliferative activities. Considering the anticancer potential of this plant species, the aim of this study was to evaluate the antileukemic activity and the chemical composition of aqueous extracts from the leaves (AECL) and roots (AECR) of C. adamantium and their possible mechanisms of action. The extracts were analyzed by LC-DAD-MS, and their constituents were identified based on the UV, MS, and MS/MS data. The AECL and AECR showed different chemical compositions, which were identified as main compounds glycosylated flavonols from AECL and ellagic acid and their derivatives from AECR. The cytotoxicity promoted by these extracts were evaluated using human peripheral blood mononuclear cells and Jurkat leukemic cell line. The cell death profile was evaluated using annexin-V-FITC and propidium iodide labeling. Changes in the mitochondrial membrane potential, the activity of caspases, and intracellular calcium levels were assessed. The cell cycle profile was evaluated using propidium iodide. Both extracts caused concentration-dependent cytotoxicity only in Jurkat cells via late apoptosis. This activity was associated with loss of the mitochondrial membrane potential, activation of caspases-9 and -3, changes in intracellular calcium levels, and cell cycle arrest in S-phase. Therefore, the antileukemic activity of the AECL and AECR is mediated by mitochondrial dysfunction and intracellular messengers, which activate the intrinsic apoptotic pathway. Hence, aqueous extracts of the leaves and roots of C. adamantium show therapeutic potential for use in the prevention and treatment of diseases associated the proliferation of tumor cell.

7.
Front Pharmacol ; 6: 75, 2015.
Article in English | MEDLINE | ID: mdl-25926796

ABSTRACT

We have investigated early programming of body mass in order to understand the multifactorial etiology of obesity. Considering that the renin-angiotensin system (RAS) is expressed and functional in the white adipose tissue (WAT) and modulates its development, we reasoned whether early transitory inhibition of angiotensin-I converting enzyme activity after birth could modify late body mass development. Therefore, newborn Wistar rats were treated with enalapril (10 mg/kg of body mass) or saline, starting at the first day of life until the age of 16 days. Between days ninetieth and hundred and eightieth, a group of these animals received high fat diet (HFD). Molecular, biochemical, histological, and physiological data were collected. Enalapril treated animals presented hyperphagia, overweight, and increased serum level of triglycerides, total cholesterol and leptin, in adult life. Body composition analyses revealed higher fat mass with increased adipocyte size in these animals. Molecular analyses revealed that enalapril treatment increases neuropeptide Y (NPY) and cocaine- and amphetamine-regulated transcript (CART) gene expression in hypothalamus, fatty acid synthase (FAS), and hormone-sensitive lipase (HSL) gene expression in retroperitoneal WAT, and decreases peroxixome proliferators-activated receptor (PPAR)γ, PPARα, uncoupling protein (UCP)2, and UCP3 gene expression in WAT. The results of the current study indicate that enalapril administration during early postnatal development increases body mass, adiposity and serum lipids in adulthood associated with enhanced food intake and decreased metabolic activity in WAT, predisposing to obesity in adulthood.

SELECTION OF CITATIONS
SEARCH DETAIL
...