Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
ChemSusChem ; 16(23): e202300971, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37681317

ABSTRACT

The zwitterions resulting from the covalent attachment of 3- or 4-hydroxy benzene to the 1,3-dimethylimidazolium cation represent basic compounds (pKa of 8.68 and 8.99 in aqueous solutions, respectively) that chemisorb in aqueous solutions 0.58 mol/mol of carbon dioxide at 1.3 bar (absolute) and 40 °C. Equimolar amounts of chemisorbed CO2 in these solutions are obtained at 10 bar and 40 °C. Chemisorption takes place through the formation of bicarbonate in the aqueous solution using imidazolium-containing phenolate. CO2 is liberated by simple pressure relief and heating, regenerating the base. The enthalpy of absorption was estimated to be -38 kJ/mol, which is about 30 % lower than the enthalpy of industrially employed aqueous solutions of MDEA (estimated at -53 kJ/mol using the same experimental apparatus). The physisorption of CO2 becomes relevant at higher pressures (>10 bar) in these aqueous solutions. Combined physio- and chemisorption of up to 1.3 mol/mol at 40 bar and 40 °C can be attained with these aqueous zwitterionic solutions that are thermally stable and can be recycled at least 20 times.

2.
Phys Chem Chem Phys ; 21(5): 2567-2571, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30657144

ABSTRACT

Diffusion-ordered spectroscopy (DOSY) is arguably a powerful method for the NMR analysis of ionic liquids, since the self-diffusion coefficients for cations and anions can be measured straightforwardly. In this work, the dynamic-structural behaviour of imidazolium ionic liquids containing different anions has been investigated by experimental measurements of direct 1H diffusion coefficients in chloroform and water solutions. The influence of ion structure has been tested by using six IL salts formed by the association of different cations (1-n-butyl-3-methylimidazolium, 1,2,3-trimethylimidazolium and tetra-n-butylammonium) with different anion structures (prolinate, acetate and o-trifluoromehtylobenzoate). The influence of IL concentration (from 0.01 to 0.5 mol L-1) was also evaluated for BMI·Pro. The contact ion pairs (or aggregates) are maintained in both chloroform and water within the range of concentrations investigated. In the particular case of 1,2,3-trimethylimidazolium imidazolate (TMI·Im) containing confined water in DMSO the maintenance of the contact ion pairs depends on the water content which may even disrupt the IL supramolecular structure.

3.
Angew Chem Int Ed Engl ; 58(2): 382-385, 2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30537375

ABSTRACT

The preorganization and cooperation mechanism of imide-based ionic liquids reported in a recent Communication was evocated to rationalize the extremely high gravimetric CO2 capture displayed by these fluids. An analysis of the reported spectroscopic evidences together with additional experiments led to the proposition of an alternative, simpler, and feasible mechanism involving the formation of bicarbonate.

4.
Phys Chem Chem Phys ; 20(17): 11608-11614, 2018 May 03.
Article in English | MEDLINE | ID: mdl-29651475

ABSTRACT

The role of small amounts of water in ionic liquids (ILs), namely, 1-n-butyl-2,3-dimethylimidazolium imidazolate (BMMI·Im), 2-methylimidazolate (BMMI·MeIm), and pyrazolate (BMMI·Pyr), is examined using NMR spectroscopy and density functional theory (DFT) calculations. The nuclear Overhauser effect (NOE) indicates that a water molecule is trapped inside the ionic network, keeping the ion pair in contact through strong H-bonds involving the hydrogen atoms of water and the nitrogen atoms of the IL anions to give a guest@host supramolecular structure. The formation of the H2O@IL pair complex with different ILs combined with the strong hydrogen bond strength within the complex is responsible for the selective H/D exchange reactions at the imidazolium C2-Me and ketone Cα positions.

5.
ChemSusChem ; 10(24): 4927-4933, 2017 12 22.
Article in English | MEDLINE | ID: mdl-28742268

ABSTRACT

Confined water in aqueous solutions of imidazolium-based ionic liquids (ILs) associated with acetate and imidazolate anions react reversibly with CO2 to yield bicarbonate. Three types of CO2 sorption in these "IL aqueous solutions" were observed: physical, CO2 -imidazolium adduct generation, and bicarbonate formation (up to 1.9 molbicarbonate mol-1 of IL), resulting in a 10:1 (molar ratio) total absorption of CO2 relative to imidazolate anions in the presence of water 1:1000 (IL/water). These sorption values are higher than the classical alkanol amines or even alkaline aqueous solutions under similar experimental conditions.


Subject(s)
Carbon Dioxide/chemistry , Ionic Liquids/chemistry , Water/chemistry , Solutions/chemistry
6.
J Org Chem ; 82(5): 2622-2629, 2017 03 03.
Article in English | MEDLINE | ID: mdl-28146350

ABSTRACT

Simple 1,2,3-trialkylimidazolium cation associated with basic anions, such as hydrogen carbonate, prolinate, and imidazolate, is an active catalyst for the H/D exchange reaction of various substrates using CDCl3 as D source, without the addition of any extra bases or metal. High deuterium incorporation (up to 49%) in acidic C-H bonds of ketone and alkyne substrates (pKa from 18.7 to 28.8) was found at room temperature. The reaction proceeds through the fast and reversible deuteration of the 2-methyl H of the imidazolium cation followed by D transfer to the substrate. The IL acts as a neutral base catalyst in which the contact ion pair is maintained in the course of the reaction. The basic active site is due to the presence of a remote basic site in the anion namely, OH of bicarbonate, NH of prolinate, and activated water in the imidazolate anion. Detailed kinetic experiments demonstrate that the reaction is first order on the substrate and pseudozero order relative to the ionic liquid, due to the fast reversible reaction involving the deuteration of the ionic liquid by the solvent.

7.
Phys Chem Chem Phys ; 18(27): 18297-304, 2016 Jul 21.
Article in English | MEDLINE | ID: mdl-27334927

ABSTRACT

It is well known that the macroscopic physico-chemical properties of ionic liquids (ILs) are influenced by the presence of water that strongly interferes with the supramolecular organization of these fluids. However, little is known about the function of water traces within this confined space and restricted ionic environments, i.e. between cations and anions. Using specially designed ILs namely 1,2,3-trimethyl-1H-imidazol-3-ium imidazol-1-ide (MMMI·Im) and 3-n-butyl-1,2-dimethyl-1H-imidazol-3-ium imidazol-1-ide (BMMI·Im), the structure and function of water have been determined in condensed, solution and gas phases by X-ray diffraction studies, NMR, molecular dynamics simulations (MDS) and DFT calculations. In the solid state the water molecule is trapped inside the ionic network (constituted of contact ion pairs formed by π(+)-π(-) interaction) through strong H-bonds involving the water hydrogens and the nitrogens of two imidazolate anions forming a guest@host supramolecular structure. A similar structural arrangement was corroborated by DFT calculations and MDS. The presence of a guest@host species (H2O@ILpair) is maintained to a great extent even in solution as detected by (1)H-(1)H NOESY-experiments of the ILs dissolved in solvents with low and high dielectric constants. This confined water catalyses the H/D exchange with other substrates containing acidic-H such as chloroform.

8.
Carbohydr Polym ; 133: 8-18, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26344248

ABSTRACT

In this work, we produced gelatin films containing different concentrations of galactomannan by casting solutions. The films were crosslinked by immersion in 30mM solution of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC). The crosslinking of gelatin-containing films was confirmed by the reduction of free amine band intensity (3400-3200cm(-1)) in the GEL IR, as well as by the evaluation of its behavior when immersed in phosphate-buffer solution. The crosslinking of galactomannan film was confirmed by the formation of new ether bonds, as observed by increasing intensity of the band at 1148cm(-1), and the reduction of OH band intensity (3600-3200cm(-1)). The presence of galactomannan and the crosslinking mediated by EDC were responsible to improve elasticity in the gelatin-based films. The samples did not show cytotoxicity during 24h or 48h. In addition, rat mesenchymal stem cells adhered to the films regardless of galactomannan concentration. The results indicated that the gelatin/galactomannan films are potential biomaterials for use as scaffolds for tissue engineering.


Subject(s)
Biocompatible Materials/chemistry , Gelatin/chemistry , Mannans/chemistry , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Biocompatible Materials/pharmacology , Carbodiimides/chemistry , Cell Survival/drug effects , Galactose/analogs & derivatives , Mechanical Phenomena , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mice , Rats
9.
Angew Chem Int Ed Engl ; 53(47): 12817-21, 2014 Nov 17.
Article in English | MEDLINE | ID: mdl-25257391

ABSTRACT

1-n-Butyl-2,3-dimethylimidazolium (BMMI) ionic liquids (ILs) associated with different anions undergo H/D exchange preferentially at 2-Me group of the imidazolium in deuterated solvents. This process is mainly related to the existence of ion pairs rather than the anion basicity. The H/D exchange occurs in solvents (CDCl3 and MeCN for instance) in which intimate contact ion pairs are present and the anion possesses a labile H in its structure, such as hydrogen carbonate and prolinate. In D2 O, separated ion pairs are formed and the H/D exchange does not occur. A plausible catalytic cycle is that the IL behaves as a neutral base in the course of all H/D exchange processes. NMR experiments, density functional calculations, and molecular dynamics simulations corroborate these hypotheses.

10.
J Phys Chem A ; 115(50): 14539-45, 2011 Dec 22.
Article in English | MEDLINE | ID: mdl-22060817

ABSTRACT

Theoretical and experimental studies on (3)J(C2H6eq) NMR spin-spin coupling constants in both the 2-X-4-t-butyl-cyclohexanone (X = H, CH(3), F, Cl, and Br) and in their alcohol derivatives series are reported. Results thus found are rationalized in terms of the transmission of the Fermi contact contribution to such couplings. To this end, dependencies of (3)J(C2H6eq) couplings versus the C(2)-C(1)-C(6) angle are compared in both series for equatorial and axial X orientations. The main trend is described in terms of the rear lobes interaction. Besides, for X = halogen atom in equatorial orientation a rather strong interaction between oxygen and halogen lone pairs is observed, and its influence on (3)J(C2H6eq) couplings is discussed and rationalized in terms of different Fermi contact transmission pathways.

11.
Magn Reson Chem ; 48 Suppl 1: S151-8, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21104760

ABSTRACT

Adequate analyses of canonical molecular orbitals (CMOs) can provide rather detailed information on the importance of different σ-Fermi contact (FC) coupling pathways (FC term transmitted through the σ-skeleton). Knowledge of the spatial distribution of CMOs is obtained by expanding them in terms of natural bond orbitals (NBOs). Their relative importance for transmitting the σ-FC contribution to a given spin-spin coupling constants (SSCCs) is estimated by resorting to the expression of the FC term given by the polarisation propagator formalism. In this way, it is possible to classify the effects affecting such couplings in two different ways: delocalisation interactions taking place in the neighbourhood of the coupling nuclei and 'round the ring' effects. The latter, associated with σ-ring currents, are observed to yield significant differences between the FC terms of (2)J(C2H3) and (2)J(C3H2) SSCCs which, consequently, are taken as probes to gauge the differences in σ-ring currents for the five-membered rings (furan, thiophene, selenophene and pyrrol) and also for the six-membered rings (benzene, pyridine, protonated pyridine and N-oxide pyridine) used in the present study.


Subject(s)
Heterocyclic Compounds, 4 or More Rings/chemistry , Quantum Theory , Magnetic Resonance Spectroscopy/standards , Molecular Structure , Reference Standards
12.
Magn Reson Chem ; 47(2): 113-20, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18991325

ABSTRACT

In this work it was sought to explore the versatility of geminal spin-spin coupling constants, (2)J(XY) SSCCs, as probes for stereochemical studies. A set of compounds, where their experimental (2)J(XY) SSCCs through the X-C-Y molecular fragment are predicted to be sensitive to hyperconjugative interactions involving either bonding or antibonding orbitals containing the C carbon atom ('coupling pathway'), were analyzed. SSCC calculations were performed for some selected examples using the second order polarization propagator approximation (SOPPA) method or within the DFT-B3LYP framework. Hyperconjugative interactions were calculated within the Natural Bond Orbital (NBO) approach. Results are condensed in two qualitative rules: Rule I(M)-hyperconjugative interactions transferring charge into the coupling pathway yield a positive increase to the Fermi contact (FC), contribution to (2)K(XY) reduced spin-spin coupling constants (RSSCC), and Rule II(M)-hyperconjugative interactions transferring charge from the coupling pathway yield a negative increase to the FC contribution to (2)K(XY) RSSCC.

13.
J Phys Chem A ; 112(46): 11956-9, 2008 Nov 20.
Article in English | MEDLINE | ID: mdl-18950144

ABSTRACT

A conceptual analysis of the CLOPPA (Contributions from Localized Orbitals within the Polarization Propagator Approach) expressions that deconvolute NMR spin-spin coupling constants [Diz A. C.; Giribet C. G.; Ruiz de Azua, M. C.; Contreras, R. H. Int. J. Quantum Chem. 1990, 37, 663.] into orbital contributions can provide an in-depth insight into the features of the electronic molecular structure that originate a given 1JCH experimental trend. In this work, several 1-X-cyclopropane derivatives are taken as model compounds to apply such ideas to rationalize substituent effects on the Fermi contact term of 1JC1,H spin-spin coupling. It is shown that in this type of coupling, its experimental trend, as measured in this work, cannot be accounted for with only the "bond" and the "other bond" contributions, requiring the inclusion of "other antibonding contributions". Such effect is discussed in terms of hyperconjugative interactions.

14.
Magn Reson Chem ; 46(3): 202-5, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18181244

ABSTRACT

In this work 3JCH spin-spin coupling constants (SSCCs) for the cis- and trans-conformers for alpha-X-acetamides (X = F, Cl, Br and CN) (1-4) were studied in detail since they were found to be notably different for both conformers. These differences are rationalized as originating in the changes of the strong negative hyperconjugative interactions that take place within the carbonyl group. Such changes are found to depend not only on conformation, but also on solvent. For the cis-conformers there is a close proximity between the X-substituent and the in-plane oxygen lone pair of pure p character, which affects notably their respective negative hyperconjugative interactions. Both the efficiency for transmitting the Fermi contact (FC) term through the coupling pathway of 3JCH SSCCs and its potential as a probe to study the stereochemical properties of the XH2C group are discussed.

15.
Magn Reson Chem ; 46(2): 107-9, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18092306

ABSTRACT

A rationalization of the known difference between the 3,4JC4H1 and 3,4JC1H4 couplings transmitted mainly through the 7-bridge in norbornanone is presented in terms of the effects of hyperconjugative interactions involving the carbonyl group. Theoretical and experimental studies of 3,4JCH couplings were carried out in 3-endo- and 3-exo-X-2-norbornanone derivatives (X = Cl, Br) and in exo- and endo-2-noborneol compounds. Hyperconjugative interactions were studied with the natural bond orbital (NBO) method. Hyperconjugative interactions involving the carbonyl pi*(C2=O) and sigma*(C2=O) antibonding orbitals produce a decrease of three-bond contribution to both 3,4JC4H1 and 3,4JC1H4 couplings. However, the latter antibonding orbital also undergoes a strong sigmaC3--C4 --> sigma*(C2=O) interaction, which defines an additional coupling pathway for 3,4JC4H1 but not for 3,4JC1H4. This pathway is similar to that known for homoallylic couplings, the only difference being the nature of the intermediate antibonding orbital; i.e. for 3,4JC4H1 it is of sigma*-type, while in homoallylic couplings it is of pi*-type.

16.
J Phys Chem A ; 111(45): 11701-5, 2007 Nov 15.
Article in English | MEDLINE | ID: mdl-17949064

ABSTRACT

Studies on the conformational equilibria of 2-methoxy, 2-methylthio, and 2-methylselenocyclohexyl-N,N-dimethylcarbamate are reported. DNMR spectroscopy experiments at 203 K provided the percentages of each conformer in equilibrium. Theoretical calculations using the MP2, B3LYP, and B971 methods with cc-pVDZ basis set were applied to determine the differences in energy between the conformers. The analysis of the potential energy surface (PES) for each conformer showed the presence of two rotamers. NBO analysis provided an explanation of the factors (hyperconjugative and steric interactions) that drive rotamer and conformer preferences.

17.
J Org Chem ; 72(6): 1901-11, 2007 Mar 16.
Article in English | MEDLINE | ID: mdl-17305395

ABSTRACT

The solvent effect on rotation about the conjugated C-N bond has been studied for methyl N,N-dimethylcarbamate (1), S-methyl N,N-dimethylthiocarbamate (2), O-methyl N,N-dimethylthiocarbamate (3), and methyl N,N-dimethyldithiocarbamate (4). The present investigation included experimental determination of activation parameters (DeltaH, DeltaS, and DeltaG) combined with theoretical calculations via both quantum and classical approaches. Rotational barriers were measured through dynamic NMR experiments in solvents of varied polarity and proton donor ability. In the less polar solvents, the values were 15.3+/-0.5 (CS2), 14.0+/-1.1 (CS2), 17.5+/-0.4 (CCl4), and 14.6+/-0.5 kcal/mol (CCl4) for 1, 2, 3, and 4, respectively. Upon changing to an aqueous solution, the greatest variations occurred for 2 and 4, whereas for 1 and 3, there was no observable effect. Quantum chemical calculations at the HF/6-311+G(2d,p) and B3LYP/6-311+G(2d,p) levels, with the inclusion of solvation effects via the isodensity polarizable continuum model (IPCM), correctly reproduced the experimentally observed trends but failed to account for some of the measured rotational barrier's magnitudes. Hydrogen-bonding effects were included by performing molecular dynamic simulations. For these latter calculations, it was necessary to parametrize the force field against energies of water-solute complexes calculated at B3LYP/6-31+G(d,p). Through the results of radial distribution functions, solution rotational barriers could be calculated, presenting good agreement with experimental determinations and revealing the role of hydrogen bonding. Interestingly, only for 2, the rotational barrier is predicted to increase as a result of complexation with water. For the remaining compounds, hydrogen bonding causes the barrier to decrease, contrasting with most of the molecular systems studied up to now.


Subject(s)
Carbamates/chemistry , Sulfur Compounds/chemistry , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Molecular Structure , Solvents/chemistry , Static Electricity , Thermodynamics
18.
J Phys Chem A ; 110(30): 9438-42, 2006 Aug 03.
Article in English | MEDLINE | ID: mdl-16869694

ABSTRACT

Studies on the conformational equilibria of 2-methoxy, 2-methylthio, and 2-methylselenocyclohexanol are reported. Dynamic NMR spectroscopy experiments at 203-210 K were performed, which provided the percentages of each conformer in equilibrium. Theoretical calculations using the B3LYP method and aug-cc-pvdz basis set were applied to determine the differences in energy between the conformers. The analysis of the potential energy surface of each conformer showed the presence of two rotamers. Natural bond orbital analysis provided an explanation of which factors are driving the rotamer and conformer preferences.

19.
J Phys Chem A ; 110(12): 4266-75, 2006 Mar 30.
Article in English | MEDLINE | ID: mdl-16553380

ABSTRACT

Hyperconjugative and electrostatic interactions effects on 1J(CH) spin-spin coupling constants (SSCCs) are critically studied from both theoretical and experimental points of view. A qualitative model is used to predict how the former affect such SSCCs, while electrostatic interactions are modeled with a point charge placed in the vicinity of the corresponding sigma(CH) bond. Hyperconjugative interactions are calculated using the "natural bond orbital" approach, and using the point-charge model, it is shown how intertwined are both types of interactions. Several members of the series 1-X-bicyclo[1.1.1]pentane and 1-X-3-methylbicyclo[1.1.1]pentane are chosen as model compounds for measuring 1J(CH) SSCCs; in some of them were performed also DFT-SSCC calculations. The strained cage substrate in these series defines strong sigma-hyperconjugative interactions, making these compounds excellent examples to verify the qualitative model presented in this work. It is verified that (a) hyperconjugative interactions from the sigma(CH) bond or into the sigma(CH) antibond containing the coupling nuclei yield a decrease of the corresponding 1J(CH) SSCC and (b) hyperconjugative interactions from other bonds involving the coupling C nucleus yield an increase of that 1J(CH) SSCC.

SELECTION OF CITATIONS
SEARCH DETAIL
...