Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37895901

ABSTRACT

Staphylococcus aureus is a microorganism with high morbidity and mortality due to antibiotic-resistant strains, making the search for new therapeutic options urgent. In this context, computational drug design can facilitate the drug discovery process, optimizing time and resources. In this work, computational methods involving ligand- and structure-based virtual screening were employed to identify potential antibacterial agents against the S. aureus MRSA and VRSA strains. To achieve this goal, tetrahydroxybenzofuran, a promising antibacterial agent according to in vitro tests described in the literature, was adopted as the pivotal molecule and derivative molecules were considered to generate a pharmacophore model, which was used to perform virtual screening on the Pharmit platform. Through this result, twenty-four molecules were selected from the MolPort® database. Using the Tanimoto Index on the BindingDB web server, it was possible to select eighteen molecules with greater structural similarity in relation to commercial antibiotics (methicillin and oxacillin). Predictions of toxicological and pharmacokinetic properties (ADME/Tox) using the eighteen most similar molecules, showed that only three exhibited desired properties (LB255, LB320 and LB415). In the molecular docking study, the promising molecules LB255, LB320 and LB415 showed significant values in both molecular targets. LB320 presented better binding affinity to MRSA (-8.18 kcal/mol) and VRSA (-8.01 kcal/mol) targets. Through PASS web server, the three molecules, specially LB320, showed potential for antibacterial activity. Synthetic accessibility (SA) analysis performed on AMBIT and SwissADME web servers showed that LB255 and LB415 can be considered difficult to synthesize and LB320 is considered easy. In conclusion, the results suggest that these ligands, particularly LB320, may bind strongly to the studied targets and may have appropriate ADME/Tox properties in experimental studies.

2.
Pharmaceuticals (Basel) ; 13(9)2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32858871

ABSTRACT

The cyclooxygenase-2 receptor is a therapeutic target for planning potential drugs with anti-inflammatory activity. The selective cyclooxygenase-2 (COX-2) inhibitor rofecoxib was selected as a pivot molecule to perform virtual ligand-based screening from six commercial databases. We performed the search for similarly shaped Rapid Overlay of Chemical Structures (ROCS) and electrostatic (EON) compounds. After, we used pharmacokinetic and toxicological parameters to determine the best potential compounds, obtained through the softwares QikProp and Derek, respectively. Then, the compounds proceeded to the molecular anchorage study, which showed promising results of binding affinity with the hCOX-2 receptor: LMQC72 (∆G = -11.0 kcal/mol), LMQC36 (∆G = -10.6 kcal/mol), and LMQC50 (∆G = -10.2 kcal/mol). LMQC72 and LMQC36 showed higher binding affinity compared to rofecoxib (∆G = -10.4 kcal/mol). Finally, molecular dynamics (MD) simulations were used to evaluate the interaction of the compounds with the target hCOX-2 during 150 ns. In all MD simulation trajectories, the ligands remained interacting with the protein until the end of the simulation. The compounds were also complexing with hCOX-2 favorably. The compounds obtained the following affinity energy values: rofecoxib: ΔGbind = -45.31 kcal/mol; LMQC72: ΔGbind = -38.58 kcal/mol; LMQC36: ΔGbind = -36.10 kcal/mol; and LMQC50: ΔGbind = -39.40 kcal/mol. The selected LMQC72, LMQC50, and LMQC36 structures showed satisfactory pharmacokinetic results related to absorption and distribution. The toxicological predictions of these compounds did not display alerts for possible toxic groups and lower risk of cardiotoxicity compared to rofecoxib. Therefore, future in vitro and in vivo studies are needed to confirm the anti-inflammatory potential of the compounds selected here with bioinformatics approaches based on rofecoxib ligand.

3.
J Biomol Struct Dyn ; 36(2): 318-334, 2018 02.
Article in English | MEDLINE | ID: mdl-28027711

ABSTRACT

Human dipeptidyl peptidase IV (hDDP-IV) has a considerable importance in inactivation of glucagon-like peptide-1, which is related to type 2 diabetes. One approach for the treatment is the development of small hDDP-IV inhibitors. In order to design better inhibitors, we analyzed 5-(aminomethyl)-6-(2,4-dichlrophenyl)-2-(3,5-dimethoxyphenyl)pyrimidin-4-amine and a set of 24 molecules found in the BindingDB web database for model designing. The analysis of their molecular properties allowed the design of a multiple linear regression model for activity prediction. Their docking analysis allowed visualization of the interactions between the pharmacophore regions and hDDP-IV. After both analyses were performed, we proposed a set of nine molecules in order to predict their activity. Four of them displayed promising activity, and thus, had their docking performed, as well as, the pharmacokinetic and toxicological study. Two compounds from the proposed set showed suitable pharmacokinetic and toxicological characteristics, and therefore, they were considered promising for future synthesis and in vitro studies.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Hypoglycemic Agents/chemistry , Binding Sites , Dipeptidyl Peptidase 4/drug effects , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Glucagon-Like Peptide 1/chemistry , Humans , Hypoglycemic Agents/therapeutic use , Models, Molecular , Molecular Docking Simulation , Structure-Activity Relationship
4.
Free Radic Biol Med ; 115: 421-435, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29248721

ABSTRACT

In this study, we report the ability of a set of eight 3-phenylcoumarin derivatives bearing 6,7- or 5,7-dihydroxyl groups, free or acetylated, bound to the benzopyrone moiety, to modulate the effector functions of human neutrophils. In general, (i) 6,7-disubstituted compounds (5, 6, 19, 20) downmodulated the Fcγ receptor-mediated neutrophil oxidative metabolism more strongly than 5,7-disubstituted compounds (21, 22, 23, 24), and (ii) hydroxylated compounds (5, 19, 21, 23) downmodulated this neutrophil function more effectively than their acetylated counterparts (6, 20, 22, 24, respectively). Compounds 5 (6,7-dihydroxy-3-[3',4'-methylenedioxyphenyl]-coumarin) and 19 (6,7-dihydroxy-3-[3',4'-dihydroxyphenyl]-coumarin) effectively downmodulated the neutrophil oxidative metabolism elicited via Fcγ and/or complement receptors. Compound 5 also downmodulated the immune complex-stimulated phagocytosis, degranulation of elastase, and production and release of neutrophil extracellular traps, as well as the human neutrophil chemotaxis towards n-formyl-methionyl-leucyl-phenylalanine, without altering the expression level of formyl peptide receptor type 1. Both compounds 5 and 19 did not impair the neutrophil capacity to recognize and kill Candida albicans. Docking calculations revealed that compounds 5 and 19 directly interacted with three catalytic residues - Gln-91, His-95, and Arg-239 - inside the myeloperoxidase active site. Together, these findings indicate that (i) inhibition of reactive oxygen species generation and degranulation of elastase are closely associated with downmodulation of release of neutrophil extracellular traps; and (ii) compound 5 can be a prototype for the development of novel immunomodulating drugs to treat immune complex-mediated inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Coumarins/pharmacology , Extracellular Traps/metabolism , Neutrophils/physiology , Pancreatic Elastase/metabolism , Receptors, Complement/metabolism , Receptors, IgG/metabolism , Anti-Inflammatory Agents/chemistry , Cells, Cultured , Coumarins/chemistry , Humans , Immunomodulation , Oxidation-Reduction , Oxidative Stress/drug effects , Peroxidase/metabolism , Phagocytosis , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...