Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Genetics ; 227(1)2024 May 07.
Article in English | MEDLINE | ID: mdl-38301657

ABSTRACT

FlyBase (flybase.org) is a model organism database and knowledge base about Drosophila melanogaster, commonly known as the fruit fly. Researchers from around the world rely on the genetic, genomic, and functional information available in FlyBase, as well as its tools to view and interrogate these data. In this article, we describe the latest developments and updates to FlyBase. These include the introduction of single-cell RNA sequencing data, improved content and display of functional information, updated orthology pipelines, new chemical reports, and enhancements to our outreach resources.


Subject(s)
Databases, Genetic , Drosophila melanogaster , Animals , Drosophila melanogaster/genetics , Genes, Insect , Genome, Insect , Genomics/methods
2.
Genetics ; 220(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-35266522

ABSTRACT

FlyBase provides a centralized resource for the genetic and genomic data of Drosophila melanogaster. As FlyBase enters our fourth decade of service to the research community, we reflect on our unique aspects and look forward to our continued collaboration with the larger research and model organism communities. In this study, we emphasize the dedicated reports and tools we have constructed to meet the specialized needs of fly researchers but also to facilitate use by other research communities. We also highlight ways that we support the fly community, including an external resources page, help resources, and multiple avenues by which researchers can interact with FlyBase.


Subject(s)
Databases, Genetic , Drosophila melanogaster , Animals , Drosophila melanogaster/genetics , Genome , Genomics
3.
Comput Struct Biotechnol J ; 19: 2018-2026, 2021.
Article in English | MEDLINE | ID: mdl-33995899

ABSTRACT

With the advent of single-cell RNA sequencing (scRNA-seq) technologies, there has been a spike in studies involving scRNA-seq of several tissues across diverse species including Drosophila. Although a few databases exist for users to query genes of interest within the scRNA-seq studies, search tools that enable users to find orthologous genes and their cell type-specific expression patterns across species are limited. Here, we built a new search database, DRscDB (https://www.flyrnai.org/tools/single_cell/web/), to address this need. DRscDB serves as a comprehensive repository for published scRNA-seq datasets for Drosophila and relevant datasets from human and other model organisms. DRscDB is based on manual curation of Drosophila scRNA-seq studies of various tissue types and their corresponding analogous tissues in vertebrates including zebrafish, mouse, and human. Of note, our search database provides most of the literature-derived marker genes, thus preserving the original analysis of the published scRNA-seq datasets. Finally, DRscDB serves as a web-based user interface that allows users to mine gene expression data from scRNA-seq studies and perform cell cluster enrichment analyses pertaining to various scRNA-seq studies, both within and across species.

4.
Front Nutr ; 8: 611217, 2021.
Article in English | MEDLINE | ID: mdl-33681273

ABSTRACT

Our aim was to analyze and compare the effects of three different long-term treatments on anthropometric profiles, eating behaviors, anxiety and depression levels, and quality of life of groups of adults with obesity. Methods: The 43 participants in the study were randomly assigned to one of three groups: the education and health group (EH, n = 12), which received lectures on health topics; the physical exercise group (PE, n = 13), which underwent physical training; and the interdisciplinary therapy plus cognitive behavioral therapy (IT + CBT) (n = 18) group, which received physical training, nutritional advice, and physical and psychological therapy. Results: Total quality of life increased significantly in the EH group (△ = 2.00); in the PE group, body weight significantly decreased (△ = -1.42) and the physical domain of quality of life improved (△ = 1.05). However, the most significant changes were seen in the IT + CBT group, in which the anthropometric profile improved; there were an increase in quality of life in all domains (physical, psychological, social, and environmental), an improvement in eating behaviors [Dutch Eating Behavior Questionnaire (DEBQ), total △ = -8.39], and a reduction in depression [Beck Depression Inventory (BDI), △ = -10.13). Conclusion: The IT + CBT program was more effective than the PE and EH programs. Clinical Trial Registration Number: NCT02573688.

5.
Nucleic Acids Res ; 49(D1): D899-D907, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33219682

ABSTRACT

FlyBase (flybase.org) is an essential online database for researchers using Drosophila melanogaster as a model organism, facilitating access to a diverse array of information that includes genetic, molecular, genomic and reagent resources. Here, we describe the introduction of several new features at FlyBase, including Pathway Reports, paralog information, disease models based on orthology, customizable tables within reports and overview displays ('ribbons') of expression and disease data. We also describe a variety of recent important updates, including incorporation of a developmental proteome, upgrades to the GAL4 search tab, additional Experimental Tool Reports, migration to JBrowse for genome browsing and improvements to batch queries/downloads and the Fast-Track Your Paper tool.


Subject(s)
Computational Biology/methods , Databases, Genetic , Drosophila melanogaster/genetics , Genome, Insect/genetics , Genomics/methods , Animals , Genes, Insect/genetics , Knowledge Bases , Molecular Sequence Annotation/methods , Search Engine/methods , Web Browser
6.
Curr Protoc Bioinformatics ; 56: 1.31.1-1.31.23, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27930807

ABSTRACT

FlyBase (flybase.org) is the primary online database of genetic, genomic, and functional information about Drosophila species, with a major focus on the model organism Drosophila melanogaster. The long and rich history of Drosophila research, combined with recent surges in genomic-scale and high-throughput technologies, mean that FlyBase now houses a huge quantity of data. Researchers need to be able to rapidly and intuitively query these data, and the QuickSearch tool has been designed to meet these needs. This tool is conveniently located on the FlyBase homepage and is organized into a series of simple tabbed interfaces that cover the major data and annotation classes within the database. This unit describes the functionality of all aspects of the QuickSearch tool. With this knowledge, FlyBase users will be equipped to take full advantage of all QuickSearch features and thereby gain improved access to data relevant to their research. © 2016 by John Wiley & Sons, Inc.


Subject(s)
Databases, Genetic , Genomics/methods , Animals , Drosophila melanogaster/genetics , Genome/genetics
7.
G3 (Bethesda) ; 5(8): 1737-49, 2015 Jun 24.
Article in English | MEDLINE | ID: mdl-26109356

ABSTRACT

In the context of the FlyBase annotated gene models in Drosophila melanogaster, we describe the many exceptional cases we have curated from the literature or identified in the course of FlyBase analysis. These range from atypical but common examples such as dicistronic and polycistronic transcripts, noncanonical splices, trans-spliced transcripts, noncanonical translation starts, and stop-codon readthroughs, to single exceptional cases such as ribosomal frameshifting and HAC1-type intron processing. In FlyBase, exceptional genes and transcripts are flagged with Sequence Ontology terms and/or standardized comments. Because some of the rule-benders create problems for handlers of high-throughput data, we discuss plans for flagging these cases in bulk data downloads.


Subject(s)
Drosophila melanogaster/genetics , Molecular Sequence Annotation , Animals , Base Sequence , Codon, Terminator , Databases, Genetic , Mitochondria/genetics , Mitochondria/metabolism , Models, Genetic , Protein Biosynthesis , RNA Editing , RNA Splice Sites
8.
G3 (Bethesda) ; 5(8): 1721-36, 2015 Jun 24.
Article in English | MEDLINE | ID: mdl-26109357

ABSTRACT

We report the current status of the FlyBase annotated gene set for Drosophila melanogaster and highlight improvements based on high-throughput data. The FlyBase annotated gene set consists entirely of manually annotated gene models, with the exception of some classes of small non-coding RNAs. All gene models have been reviewed using evidence from high-throughput datasets, primarily from the modENCODE project. These datasets include RNA-Seq coverage data, RNA-Seq junction data, transcription start site profiles, and translation stop-codon read-through predictions. New annotation guidelines were developed to take into account the use of the high-throughput data. We describe how this flood of new data was incorporated into thousands of new and revised annotations. FlyBase has adopted a philosophy of excluding low-confidence and low-frequency data from gene model annotations; we also do not attempt to represent all possible permutations for complex and modularly organized genes. This has allowed us to produce a high-confidence, manageable gene annotation dataset that is available at FlyBase (http://flybase.org). Interesting aspects of new annotations include new genes (coding, non-coding, and antisense), many genes with alternative transcripts with very long 3' UTRs (up to 15-18 kb), and a stunning mismatch in the number of male-specific genes (approximately 13% of all annotated gene models) vs. female-specific genes (less than 1%). The number of identified pseudogenes and mutations in the sequenced strain also increased significantly. We discuss remaining challenges, for instance, identification of functional small polypeptides and detection of alternative translation starts.


Subject(s)
Drosophila melanogaster/genetics , Molecular Sequence Annotation , 3' Untranslated Regions , Animals , Databases, Genetic , Exons , Female , Male , Models, Genetic , RNA, Small Untranslated/chemistry , RNA, Small Untranslated/metabolism , Sequence Analysis, RNA , Transcription Initiation Site , Transcriptome
9.
Nucleic Acids Res ; 43(Database issue): D690-7, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25398896

ABSTRACT

Release 6, the latest reference genome assembly of the fruit fly Drosophila melanogaster, was released by the Berkeley Drosophila Genome Project in 2014; it replaces their previous Release 5 genome assembly, which had been the reference genome assembly for over 7 years. With the enormous amount of information now attached to the D. melanogaster genome in public repositories and individual laboratories, the replacement of the previous assembly by the new one is a major event requiring careful migration of annotations and genome-anchored data to the new, improved assembly. In this report, we describe the attributes of the new Release 6 reference genome assembly, the migration of FlyBase genome annotations to this new assembly, how genome features on this new assembly can be viewed in FlyBase (http://flybase.org) and how users can convert coordinates for their own data to the corresponding Release 6 coordinates.


Subject(s)
Databases, Genetic , Drosophila melanogaster/genetics , Genome, Insect , Molecular Sequence Annotation , Animals , Genomics/standards , High-Throughput Nucleotide Sequencing , Internet , Models, Genetic , Molecular Sequence Data , Reference Standards , Sequence Alignment , Software
10.
Genes Dev ; 26(9): 933-44, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22549956

ABSTRACT

The expression of many metazoan genes is regulated through controlled release of RNA polymerase II (Pol II) that has paused during early transcription elongation. Pausing is highly enriched at genes in stimulus-responsive pathways, where it has been proposed to poise downstream targets for rapid gene activation. However, whether this represents the major function of pausing in these pathways remains to be determined. To address this question, we analyzed pausing within several stimulus-responsive networks in Drosophila and discovered that paused Pol II is much more prevalent at genes encoding components and regulators of signal transduction cascades than at inducible downstream targets. Within immune-responsive pathways, we found that pausing maintains basal expression of critical network hubs, including the key NF-κB transcription factor that triggers gene activation. Accordingly, loss of pausing through knockdown of the pause-inducing factor NELF leads to broadly attenuated immune gene activation. Investigation of murine embryonic stem cells revealed that pausing is similarly widespread at genes encoding signaling components that regulate self-renewal, particularly within the MAPK/ERK pathway. We conclude that the role of pausing goes well beyond poising-inducible genes for activation and propose that the primary function of paused Pol II is to establish basal activity of signal-responsive networks.


Subject(s)
Drosophila melanogaster/growth & development , Drosophila melanogaster/genetics , Gene Expression Regulation, Developmental , Gene Regulatory Networks , RNA Polymerase II/physiology , Transcriptional Activation , Animals , Drosophila melanogaster/immunology , Embryonic Stem Cells/metabolism , Immunity/genetics , Janus Kinases/metabolism , Mice , RNA Polymerase II/genetics , Signal Transduction , Transcription Factors/genetics , Transcription Factors/physiology
11.
Cell ; 143(4): 540-51, 2010 Nov 12.
Article in English | MEDLINE | ID: mdl-21074046

ABSTRACT

Metazoan transcription is controlled through either coordinated recruitment of transcription machinery to the gene promoter or regulated pausing of RNA polymerase II (Pol II) in early elongation. We report that a striking difference between genes that use these distinct regulatory strategies lies in the "default" chromatin architecture specified by their DNA sequences. Pol II pausing is prominent at highly regulated genes whose sequences inherently disfavor nucleosome formation within the gene but favor occlusion of the promoter by nucleosomes. In contrast, housekeeping genes that lack pronounced Pol II pausing show higher nucleosome occupancy downstream, but their promoters are deprived of nucleosomes regardless of polymerase binding. Our results indicate that a key role of paused Pol II is to compete with nucleosomes for occupancy of highly regulated promoters, thereby preventing the formation of repressive chromatin architecture to facilitate further or future gene activation.


Subject(s)
Gene Expression Regulation , Nucleosomes/metabolism , RNA Polymerase II/metabolism , Animals , Cell Line , Chromatin Assembly and Disassembly , Drosophila , Promoter Regions, Genetic , Transcription Factors/metabolism , Transcription Initiation Site
12.
Science ; 327(5963): 335-8, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20007866

ABSTRACT

Emerging evidence indicates that gene expression in higher organisms is regulated by RNA polymerase II stalling during early transcription elongation. To probe the mechanisms responsible for this regulation, we developed methods to isolate and characterize short RNAs derived from stalled RNA polymerase II in Drosophila cells. Significant levels of these short RNAs were generated from more than one-third of all genes, indicating that promoter-proximal stalling is a general feature of early polymerase elongation. Nucleotide composition of the initially transcribed sequence played an important role in promoting transcriptional stalling by rendering polymerase elongation complexes highly susceptible to backtracking and arrest. These results indicate that the intrinsic efficiency of early elongation can greatly affect gene expression.


Subject(s)
Gene Expression Regulation , Genes, Insect , Promoter Regions, Genetic , RNA Polymerase II/metabolism , RNA/metabolism , Transcription, Genetic , Animals , Base Composition , Cell Line , Drosophila melanogaster , Genome, Insect , Oligonucleotide Array Sequence Analysis , RNA/genetics , RNA Caps/genetics , RNA Caps/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Initiation Site
13.
Development ; 135(1): 133-43, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18045835

ABSTRACT

Although the subcellular localization of mRNA transcripts is a well-established mechanism for controlling protein localization, the basis for the recognition of mRNA localization elements is only now emerging. For example, although localization elements have been defined for many mRNAs that localize to apical cytoplasm in Drosophila embryos, no unifying properties have been identified within these elements. In this study, we identify and characterize an apical localization element in the 3'UTR of the Drosophila wingless mRNA. We show that this element, referred to as WLE3, is both necessary and sufficient for apical RNA transport. Full, unrestricted activity, however, requires the presence of one of several downstream potentiating elements. Comparison of WLE3 sequences within the Drosophila genus, and their predicted secondary structures, defines a highly conserved stem-loop structure. Despite these high levels of sequence and predicted structure conservation, however, mutagenesis shows significant leeway for both sequence and structure variation in the predicted stem-loop. Importantly, the features that emerge as crucial include an accessible distal helix sequence motif, which is also found in the predicted structures of other apical localization elements.


Subject(s)
Consensus Sequence/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Nucleic Acid Conformation , Proto-Oncogene Proteins/genetics , RNA Transport , Transcription, Genetic/genetics , Animals , Animals, Genetically Modified , Base Sequence , Conserved Sequence , Drosophila melanogaster/embryology , Evolution, Molecular , Genes, Reporter/genetics , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Alignment , Wnt1 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...