Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Food Res Int ; 188: 114433, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823827

ABSTRACT

Whey derived peptides have shown potential activity improving brain function in pathological condition. However, there is little information about their mechanism of action on glial cells, which have important immune functions in brain. Astrocytes and microglia are essential in inflammatory and oxidative defense that take place in neurodegenerative disease. In this work we evaluate antioxidant and anti-inflammatory potential bioactivity of whey peptide in glial cells. Peptides were formed during simulated gastrointestinal digestion (Infogest protocol), and low molecular weight (<5kDA) peptides (WPHf) attenuated reactive oxygen species (ROS) production induced by hydrogen peroxide stimulus in both cells in dose-dependent manner. WPHf induced an increase in the antioxidant glutathione (GSH) content and prevented GSH reduction induced by lipopolysaccharides (LPS) stimulus in astrocytes cells in a cell specific form. An increase in cytokine mRNA expression (TNFα and IL6) and nitric oxide secretion induced by LPS was attenuated by WPHf pre-treatment in both cells. The inflammatory pathway was dependent on NFκB activation. Bioactive peptide ranking analysis showed positive correlation with hydrophobicity and negative correlation with high molecular weights. The sequence identification revealed 19 peptides cross-referred with bioactive database. Whey peptides were rich in leucine, valine and tyrosine in the C-terminal region and lysine in the N-terminal region. The anti-inflammatory and antioxidant potential of whey peptides were assessed in glia cells and its mechanisms of action were related, such as modulation of antioxidant enzymes and anti-inflammatory pathways. Features of the peptide structure, such as molecular size, hydrophobicity and types of amino acids present in the terminal region are associated to bioactivity.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Neuroglia , Whey Proteins , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology , Whey Proteins/pharmacology , Whey Proteins/chemistry , Whey Proteins/metabolism , Neuroglia/drug effects , Neuroglia/metabolism , Animals , Reactive Oxygen Species/metabolism , Lipopolysaccharides/pharmacology , Glutathione/metabolism , Peptides/pharmacology , Nitric Oxide/metabolism , Astrocytes/drug effects , Astrocytes/metabolism
2.
Tumour Virus Res ; 17: 200276, 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38159643

ABSTRACT

The Epstein-Barr Virus (EBV) encodes viral microRNAs (miRs) that have been implicated in the pathogenesis of nasopharyngeal and gastric carcinomas, yet their potential roles in lymphomas remain to be fully elucidated. This study evaluated the impact of CRISPR/Cas9-mediated knockdown of EBV miRs BART-7 and BART-9 in EBV-positive Burkitt lymphoma cells Akata. As anticipated, the Akata cells subjected to CRISPR/Cas9-mediated knockdown of either EBV BART-7 or BART-9 exhibited a significant reduction in the expression of these viral miRs compared to cells with wild-type (wt) EBV genomes. This outcome effectively validates the experimental model employed in this study. Knocking down either BART-7 or BART-9 resulted in a notable reduction in cell viability and proliferation rates, alongside an elevation in the expression of EBV lytic genes. Global proteomic analysis revealed that the knockdown of EBV BART-7 significantly decreased the expression of ubiquitin/proteasome proteins while concurrently increasing RNA binding proteins (RBPs). Conversely, BART-9 knockdown reduced proteins associated with oxidoreductase activity, particularly those involved in fatty acid metabolism. Our findings unveil previously undiscovered EBV miRs BARTs 7 and 9 roles in cellular pathways relevant to both viral biology and lymphomagenesis.

3.
Food Res Int ; 173(Pt 1): 113291, 2023 11.
Article in English | MEDLINE | ID: mdl-37803604

ABSTRACT

Enteric endothelial cells are the first structure to come in contact with digested food and may suffer oxidative damage by innumerous exogenous factors. Although peptides derived from whey digestion have presented antioxidant potential, little is known regarding antioxidant pathways activation in Caco-2 cell line model. Hence, we evaluated the ability to form whey peptides resistant to simulated gastrointestinal digestive processes, with potential antioxidant activity on gastrointestinal cells and associated with sequence structure and activity. Using the INFOGEST method of simulated static digestion, we achieved 35.2% proteolysis, with formation of peptides of low molecular mass (<600 Da) evaluated by FPLC. The digestion-resistant peptides showed a high proportion of hydrophobic and acidic amino acids, but with average surface hydrophobicity. We identified 24 peptide sequences, mainly originated from ß-lactoglobulin, that exhibit various bioactivities. Structurally, the sequenced peptides predominantly contained the amino acids lysine and valine in the N-terminal region, and tyrosine in the C-terminal region, which are known to exhibit antioxidant properties. The antioxidant activity of the peptide digests was on average twice as potent as that of the protein isolates for the same concentration, as evaluated by ABTS, DPPH and ORAC. Evaluation of biological activity in Caco-2 intestinal cells, stimulated with hydrogen peroxide, showed that they attenuated the production of reactive oxygen species and prevented GSH reduction and SOD activity increase. Caco-2 cells were not responsive to nitric oxide secretion. This study suggests that whey peptides formed during gastric digestion exhibit biological antioxidant activity, without the need for previously hydrolysis with exogenous enzymes for supplement application. The study's primary contribution was demonstrating the antioxidant activity of whey peptides in maintaining the gastrointestinal epithelial cells, potentially preventing oxidative stress that affects the digestive system.


Subject(s)
Antioxidants , Whey , Humans , Antioxidants/chemistry , Caco-2 Cells , Whey/metabolism , Endothelial Cells/metabolism , Whey Proteins/chemistry , Peptides/chemistry , Digestion
4.
Food Res Int ; 167: 112704, 2023 05.
Article in English | MEDLINE | ID: mdl-37087270

ABSTRACT

Catharina sour, the first internationally recognized Brazilian beer, is characterized by fermentation with lactic acid bacteria (LAB), which may have probiotic potential, and the addition of fruit juice. This study aimed to evaluate the use of the starter Streptococcus thermophilus TH-4 (TH-4) and the probiotics Lacticaseibacillus paracasei F19 and 431, associated with Saccharomyces cerevisiae US-05, in the absence (control)/presence of passion fruit or peach juices. Evaluation proceeded during fermentation and storage by enumeration using pour-plate and qPCR; gene expressions of hop resistance; proteome by Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS); and odor, flavor, and metabolome by Headspace Solid-Phase Microextraction (HS-SPME), coupled with the gas chromatography-mass spectrometry (GC-MS) analysis. We concluded that the strains studied are recommended for applications in sour beers, due to the presence of defense mechanisms like membrane adhesion and H + pump. Furthermore, HS-SPME/GC-MS indicated that the strains may contribute to the beer flavor and odor.


Subject(s)
Beer , Probiotics , Beer/analysis , Brazil , Chromatography, Liquid , Tandem Mass Spectrometry , Saccharomyces cerevisiae/metabolism , Probiotics/analysis
5.
J Proteomics ; 269: 104742, 2022 10 30.
Article in English | MEDLINE | ID: mdl-36174952

ABSTRACT

Snakes of the genus Bothrops are responsible the most snakebites in the Brazil, causing a diverse and complex pathophysiological condition. Bothrops erythromelas is the main specie of medical relevance found in the Caatinga from the Brazilian Northeast region. The pathophysiological effects involving B. erythromelas snakebite as well as the organism reaction in response to this envenomation are not so explored. Thus, edema was induced in mice paws using 2.5 µg or 5.0 µg of B. erythromelas venom, and the percentage of edema was measured. Plasma was collected 30  minutes after the envenomation-induced in mice and analyzed by mass spectrometry. It was identified a total of 112 common plasma proteins differentially abundant among experimental groups, which are involved with the complement system and coagulation cascades, oxidative stress, neutrophil degranulation, platelets degranulation and inflammatory response. Apolipoprotein A1 (Apoa), serum amyloid protein A-4 (Saa4), adiponectin (Adipoq) showed up-regulated in mice plasma after injection of venom, while fibulin (Fbln1), factor XII (F12) and vitamin K-dependent protein Z (Proz) showed down-regulated. The results indicate a protein pattern of thrombo-inflammation to the B. erythromelas snakebite, evidencing potential biomarkers for monitoring this snakebite, new therapeutic targets and its correlations with the degree of envenomation once showed modulations in the abundance among the different groups according to the amount of venom injected into the mice.


Subject(s)
Bothrops , Crotalid Venoms , Snake Bites , Adiponectin , Animals , Apolipoprotein A-I , Bothrops/metabolism , Crotalid Venoms/metabolism , Edema , Factor XII , Mice , Plasma/chemistry , Proteome/analysis , Serum Amyloid A Protein , Snake Venoms , Vitamin K
6.
Toxicon ; 213: 27-42, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35405203

ABSTRACT

Bothrops leucurus is considered as a snake of medical interest in the State of Bahia, Brazil. However, so far, there are no studies that provide a refined mapping of the composition of this venom. The aim of this work was to better understand the protein composition of B. leucurus snake venom and to isolate and biologically characterize the most abundant toxin, a basic PLA2-like. Shotgun proteomics approach identified 137 protein hits in B. leucurus venom subdivided into 19 protein families. The new basic PLA2-like toxin identified was denominated Bleu-PLA2-like, it and other proteoforms represents about 25% of the total proteins in the venom of B. leucurus and induces myotoxicity, inflammation and muscle damage. Immunoreactivity assays demonstrated that B. leucurus venom is moderately recognized by bothropic and crotalic antivenoms, and on the other hand, Bleu-PLA2-like and its proteoforms are poorly recognized. Our findings open doors for future studies in order to assess the systemic effects caused by this snake venom in order to better understand the toxinological implications of this envenomation and, consequently, to assist in the clinical treatment of victims.


Subject(s)
Bothrops , Crotalid Venoms , Animals , Antivenins/pharmacology , Bothrops/metabolism , Crotalid Venoms/metabolism , Crotalid Venoms/toxicity , Phospholipases A2/metabolism , Snake Venoms/metabolism , Snake Venoms/toxicity
7.
J Proteomics ; 253: 104464, 2022 02 20.
Article in English | MEDLINE | ID: mdl-34954398

ABSTRACT

Bothrops spp. is responsible for about 70% of snakebites in Brazil, causing a diverse and complex pathophysiological condition. Bothrops leucurus is the main species of medical relevance found in the Atlantic coast in the Brazilian Northeast region. The pathophysiological effects involved B. leucurus snakebite as well as the organism's reaction in response to this envenoming, it has not been explored yet. Thus, edema was induced in mice paw using 1.2, 2.5, and 5.0 µg of B. leucurus venom, the percentage of edema was measured 30 min after injection and the blood plasma was collected and analyzed by shotgun proteomic strategy. We identified 80 common plasma proteins with differential abundance among the experimental groups and we can understand the early aspects of this snake envenomation, regardless of the suggestive severity of an ophidian accident. The results showed B. leucurus venom triggers a thromboinflammation scenario where family's proteins of the Serpins, Apolipoproteins, Complement factors and Component subunits, Cathepsins, Kinases, Oxidoreductases, Proteases inhibitors, Proteases, Collagens, Growth factors are related to inflammation, complement and coagulation systems, modulators platelets and neutrophils, lipid and retinoid metabolism, oxidative stress and tissue repair. Our findings set precedents for future studies in the area of early diagnosis and/or treatment of snakebites. SIGNIFICANCE: The physiopathological effects that the snake venoms can cause have been investigated through classical and reductionist tools, which allowed, so far, the identification of action mechanisms of individual components associated with specific tissue damage. The currently incomplete limitations of this knowledge must be expanded through new approaches, such as proteomics, which may represent a big leap in understanding the venom-modulated pathological process. The exploration of the complete protein set that suffer modifications by the simultaneous action of multiple toxins, provides a map of the establishment of physiopathological phenotypes, which favors the identification of multiple toxin targets, that may or may not act in synergy, as well as favoring the discovery of biomarkers and therapeutic targets for manifestations that are not neutralized by the antivenom.


Subject(s)
Bothrops , Crotalid Venoms , Snake Bites , Thrombosis , Animals , Antivenins/metabolism , Bothrops/metabolism , Crotalid Venoms/toxicity , Inflammation , Mice , Plasma/metabolism , Proteome , Proteomics , Snake Venoms/toxicity
8.
Nanomedicine (Lond) ; 16(24): 2189-2206, 2021 10.
Article in English | MEDLINE | ID: mdl-34533056

ABSTRACT

Background: We evaluated the impacts of corona protein (CP) formation on the alternating current biosusceptometry (ACB) signal intensity and in vivo circulation times of three differently coated magnetic nanoparticles (MNP): bare, citrate-coated and bovine serum albumin-coated MNPs. Methods: We employed the ACB system, gel electrophoresis and mass spectrometry analysis. Results: Higher CP formation led to a greater reduction in the in vitro ACB signal intensity and circulation time. We found fewer proteins forming the CP for the bovine serum albumin-coated MNPs, which presented the highest circulation time in vivo among the MNPs studied. Conclusion: These data showed better biocompatibility, stability and magnetic signal uniformity in biological media for bovine serum albumin-coated MNPs than for citrate-coated MNPs and bare MNPs.


Subject(s)
Magnetite Nanoparticles , Protein Corona , Biocompatible Materials , Magnetics , Serum Albumin, Bovine
9.
Front Immunol ; 12: 653151, 2021.
Article in English | MEDLINE | ID: mdl-33841437

ABSTRACT

We evaluated the safety, optimal dose, and preliminary effectiveness of a new-approach Africanized honeybee (Apis mellifera) Antivenom (AAV) in a phase I/II, multicenter, non-randomized, single-arm clinical trial involving 20 participants with multiple stings. Participants received 2 to 10 vials of AAV depending on the number of stings they suffered, or a predefined adjuvant, symptomatic, and complementary treatment. The primary safety endpoint was the occurrence of early adverse reactions within the first 24 h of treatment. Preliminary efficacy based on clinical evolution, including laboratory findings, was assessed at baseline and at various time points over the four following weeks. ELISA assays and mass spectrometry were used to estimate venom pharmacokinetics before, during, and after treatment. Twenty adult participants, i.e., 13 (65%) men and 7 (35%) women, with a median age of 44 years and a mean body surface area of 1.92 m2 (median = 1.93 m2) were recruited. The number of stings ranged from 7 to > 2,000, with a median of 52.5. Symptoms of envenoming were classified as mild, moderate, or severe in 80% (16), 15% (3), and 5% (1) of patients, respectively; patients with mild, moderate, or severe envenoming received 2, 6, and 10 vials of AAV as per the protocol. None of the patients had late reactions (serum sickness) within 30 d of treatment. There was no discontinuation of the protocol due to adverse events, and there were no serious adverse events. One patient had a moderate adverse event, transient itchy skin, and erythroderma. All participants completed the intravenous antivenom infusion within 2 h, and there was no loss to follow-up after discharge. ELISA assays showed venom (melittin and PLA2) concentrations varying between 0.25 and 1.479 ng/mL prior to treatment. Venom levels decreased in all patients during the hospitalization period. Surprisingly, in nine cases (45%), despite clinical recovery and the absence of symptoms, venom levels increased again during outpatient care 10 d after discharge. Mass spectrometry showed melittin in eight participants, 30 d after treatment. Considering the promising safety results for this investigational product in the treatment of massive Africanized honeybee attack, and its efficacy, reflected in the clinical improvements and corresponding immediate decrease in blood venom levels, the AAV has shown to be safe for human use. Clinical Trial Registration: UTN: U1111-1160-7011, identifier [RBR-3fthf8].


Subject(s)
Antivenins/administration & dosage , Bee Venoms/antagonists & inhibitors , Bees/immunology , Insect Bites and Stings/therapy , Adult , Aged , Animals , Antivenins/adverse effects , Bee Venoms/blood , Brazil , Female , Humans , Insect Bites and Stings/blood , Insect Bites and Stings/diagnosis , Insect Bites and Stings/immunology , Male , Middle Aged , Severity of Illness Index , Treatment Outcome , Young Adult
10.
Front Immunol ; 12: 627541, 2021.
Article in English | MEDLINE | ID: mdl-33708219

ABSTRACT

Background: Heterologous fibrin sealant (HFS) consists of a fibrinogen-rich cryoprecipitate extracted from Bubalus bubalis buffalo blood and a thrombin-like enzyme purified from Crotalus durissus terrificus snake venom. This study evaluated the safety and immunogenicity of HFS, estimated the best dose, and assessed its preliminary efficacy in the treatment of chronic venous ulcers (CVU). Methods: A phase I/II non-randomized, single-arm clinical trial was performed on 31 participants, accounting for a total of 69 active CVUs. All ulcers were treated with HFS, essential fatty acid, and Unna boot for 12 weeks. The outcomes assessed were: (1) primary safety, immunogenicity analyses, and confirmation of the lowest safe dose; (2) secondary promising efficacy by analyzing the healing process. Immunogenicity was evaluated using the serum-neutralizing (IgM and IgG) and non-neutralizing (IgA and IgE) antibody techniques against the product. The immuno-detection of IgE class antibodies was assessed using dot-blot assay before and at the end of treatment. Positive samples on dot-blot assays were subsequently analyzed by western blotting to verify the results. Results: No severe systemic adverse events related to the use of HFS were observed. Local adverse events potentially related to treatment include ulcer pain (52%), peri-ulcer maceration (16%), peri-ulcer pruritus (12%), critical colonization (8%), peri-ulcer eczema (4%), the opening of new ulcers (4%), and increased ulcerated area 4%). Neutralizing and non-neutralizing antibodies did not show significant deviations at any of the evaluated time points. Blot assays showed that all patients presented negative immunological reactions, either before or after treatment, with the thrombin-like enzyme component. In addition, two participants showed a positive immunological reaction to the cryoprecipitate component, while another two were positive before and during treatment. Regarding the secondary outcomes of preliminary efficacy, a total healing and significant reduction of the area was observed in 47.5 and 22%, respectively. A qualitative improvement was observed in the wound beds of unhealed ulcers. Conclusions: The investigational HFS bioproduct proved to be safe and non-immunogenic with a good preliminary efficacy for the treatment of CVU, according to the protocol and doses proposed. A multicentric phase III clinical trial will be necessary to verify these findings.


Subject(s)
Fibrin Tissue Adhesive/therapeutic use , Varicose Ulcer/drug therapy , Adult , Aged , Aged, 80 and over , Chronic Disease , Female , Fibrin Tissue Adhesive/adverse effects , Humans , Immunoglobulins/blood , Male , Middle Aged , Varicose Ulcer/immunology , Wound Healing
11.
J Venom Anim Toxins Incl Trop Dis ; 26: e20190101, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32636876

ABSTRACT

Venous ulcers are the main causes of chronic lower-limb ulcers. The healing difficulties encourage the research and development of new products in order to achieve better therapeutic results. Fibrin sealant is one of these alternatives. Besides being a validated scaffold and drug delivery system, it possesses excellent healing properties. This review covered the last 25 years of the literature and showed that the fibrin sealant is used in various clinical situations to promote the healing of different types of ulcers, especially chronic ones. These are mostly venous in origin and usually does not respond to conventional treatment. Commercially, only the homologous fibrin sealants obtained from human blood are available, which are highly efficient but very expensive. The heterologous fibrin sealant is a non-commercial experimental low-cost product and easily produced due to the abundance of raw material. The phase I/II clinical trial is already completed and showed that the product is safe and promisingly efficacious for the treatment of chronic venous ulcers. In addition, clinical proteomic strategies to assess disease prognosis have been increasingly used. By analyzing liquid samples from the wounds through proteomic strategies, it is possible to predict before treatment which ulcers will evolve favorably and which ones will be difficult to heal. This prognosis is only possible by evaluating the expression of isolated proteins in exudates and analysis using label-free strategies for shotgun. Multicentric clinical trials will be required to evaluate the efficacy of fibrin sealant to treat chronic ulcers, as well as to validate the proteomic strategies to assess prognosis.

12.
Article in English | MEDLINE | ID: mdl-32528536

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) are small membrane-bound vesicles of growing interest in vetetinary parasitology. The aim of the present report was to provide the first isolation, quantification and protein characterization of EVs from buffalo (Bubalus bubalis) sera infected with Theileria spp. METHODS: Infected animals were identified through optical microscopy and PCR. EVs were isolated from buffalo sera by size-exclusion chromatography and characterized using western blotting analysis, nanoparticle tracking analysis and transmission electron microscopy. Subsequently, the proteins from isolated vesicles were characterized by mass spectrometry. RESULTS: EVs from buffalo sera have shown sizes in the 124-140 nm range and 306 proteins were characterized. The protein-protein interaction analysis has evidenced biological processes and molecular function associated with signal transduction, binding, regulation of metabolic processes, transport, catalytic activity and response to acute stress. Five proteins have been shown to be differentially expressed between the control group and that infected with Theileria spp., all acting in the oxidative stress pathway. CONCLUSIONS: EVs from buffaloes infected with Theileria spp. were successfully isolated and characterized. This is an advance in the knowledge of host-parasite relationship that contributes to the understanding of host immune response and theileriosis evasion mechanisms. These findings may pave the way for searching new EVs candidate-markers for a better production of safe biological products derived from buffaloes.

13.
Mol Biol Rep ; 47(7): 5191-5205, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32564226

ABSTRACT

Eucalyptus are widely cultivated in several regions of the world due to their adaptability to different climatic conditions and amenable to tree breeding programs. With changes in environmental conditions pointing to an increase in aridity in many areas of the globe, the demand for genetic materials that adapt to this situation is required. Therefore, the aim of this work was to identify contrasting differences between two Eucalyptus species under water stress through the identification of differentially abundant proteins. For this, total protein extraction was proceeded from leaves of both species maintained at 40 and 80% of field capacity (FC). The 80% FC water regime was considered as the control and the 40% FC, severe water stress. The proteins were separated by 2-DE with subsequent identification of those differentially abundant by liquid nanocromatography coupled to high resolution MS (Q-Exactive). Comparative proteomics allowed to identify four proteins (ATP synthase gamma and alpha, glutamine synthetase and a vacuolar protein) that were more abundant in drought-tolerant species and simultaneously less abundant or unchanged in the drought- sensitive species, an uncharacterized protein found exclusively in plants under drought stress and also 10 proteins (plastid-lipid, ruBisCO activase, ruBisCO, protease ClpA, transketolase, isoflavone reductase, ferredoxin-NADP reductase, malate dehydrogenase, aminobutyrate transaminase and sedoheptulose-1-bisphosphatase) induced exclusively in the drought-tolerant species in response to water stress. These results suggest that such proteins may play a crucial role as potential markers of water stress tolerance through the identification of species-specific proteins, and future targets for genetic engineering.


Subject(s)
Eucalyptus/genetics , Osmotic Pressure , Proteome/genetics , Environment , Eucalyptus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Proteome/metabolism
14.
Microb Drug Resist ; 26(3): 179-189, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31237481

ABSTRACT

We investigated the responses and mechanisms of action of methicillin-resistant Staphylococcus aureus (MRSA) metabolism when exposed under sublethal concentrations of the synergistic antibacterial combination of nisin + oxacillin (» of maximum sublethal concentration) and sublethal concentrations of oxacillin only and nisin only. A total of 135 proteins were identified, showing an alteration in the expression of 85 proteins when treatment was compared with untreated bacteria (control). When the bacteria were treated using the combination, there was an increase in the expression of proteins related to resistance (e.g., beta-lactamase) and also in the ones involved in protein synthesis, and there was a decrease in the expression of proteins related to stress and alterations in proteins related to bacterial energy metabolism. Bacterial oxidative stress showed that the combination was able to induce oxidative stress (p < 0.05) and increase enzyme activities and lipid hydroperoxide levels compared with individual treatments. The analysis of cell ultrastructure showed damage in MRSA, especially on the bacterial wall and the plasma membrane, with cell lysis and death. Thus, the changes caused by these treatments affected different proteins related to the bacterial biological processes and signaling pathways such as cell division, structure, stress, regulation, bacterial resistance, protein synthesis, gene expression, energetic metabolism, and virulence. It was observed that synergism among antimicrobials has high potential in therapeutic use and may reduce the required amounts of antibacterial substances in addition to being effective on different targets in bacterial cells.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Methicillin-Resistant Staphylococcus aureus/drug effects , Nisin/pharmacology , Oxacillin/pharmacology , Bacterial Proteins/classification , Bacterial Proteins/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Wall/drug effects , Cell Wall/metabolism , Drug Combinations , Drug Synergism , Energy Metabolism/drug effects , Energy Metabolism/genetics , Gene Ontology , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/metabolism , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Microbial Sensitivity Tests , Molecular Sequence Annotation , Oxidative Stress , Protein Biosynthesis/drug effects , Protein Biosynthesis/genetics , Proteomics/methods , Virulence/drug effects , beta-Lactamases/genetics , beta-Lactamases/metabolism
15.
J Proteomics ; 214: 103625, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31881347

ABSTRACT

Biological properties of natural products are an important research target and essential oils (EO) from aromatic plants with antimicrobial properties are well documented. However, their uses are limited, and the mechanisms underlying their antibacterial activity are still not well known. Therefore, our objective was to evaluate the antibacterial activities of Origanum vulgare EO, thymol and carvacrol against Salmonella Enteritidis ATCC 13076 strain, particularly regarding the bacterial proteic profile, enzymatic activities and DNA synthesis. Bacterial expressed proteins were evaluated using an untreated assay control and treatments with sublethal concentrations of oregano EO, carvacrol and thymol. The same protein extracts were also assayed for oxidative stress and energy metabolism enzyme activities, as well as effect on DNA synthesis. Protein expression outcomes revealed by 2D-SDS-PAGE, from antimicrobial actions, showed a stress response with differential expressions of chaperones and cellular protein synthesis mediated by the bacterial signaling system. In addition, Salmonella used a similar mechanism in defense against oxidative stress, for its survival. Thus, the antibacterial inhibitory activity of EO was preferentially associated with the presence of thymol and there was interference in protein regulation as well as DNA synthesis affected by these compounds. SIGNIFICANCE: Antimicrobial activity of essential oils (EO) is already known. In this way, the understanding of how this activity occurs is a fundamental part to provide the practical and rational use of these substances. In the current scenario, where the emergence of resistant bacteria or even multiresistant bacteria against conventional antimicrobials, the search for alternatives becomes essential, since the discovery of new inhibitory substances does not occur at the same speed. The anti-Salmonella action allied to the knowledge about the biological processes affected by O. vulgare EO contribute to these bioactive compounds being effectively used as agents in the safety and shelf life of food in a future product, packaging or process where the antibacterial activity is safe and best used.


Subject(s)
Oils, Volatile , Origanum , Anti-Bacterial Agents/pharmacology , Cymenes , Microbial Sensitivity Tests , Oils, Volatile/pharmacology , Proteomics , Salmonella enteritidis , Thymol/pharmacology
16.
Article in English | MEDLINE | ID: mdl-31131007

ABSTRACT

BACKGROUND: Ruminant feed containing animal byproduct proteins (ABPs) is prohibited in many countries due to its risk of transmitting prion diseases (PD). In most cases the entire herd is sacrificed, which causes great harm to the producer countries by preventing their exportation of ruminant derived-products. METHODS: We used stable isotope ratio mass spectrometry (IRMS) of carbon (13C/12C) and nitrogen (15N/14N) to trace the animal protein in the blood of 15 buffaloes (Bubalus bubalis) divided into three experimental groups: 1 - received only vegetable protein (VP) during 117 days; 2 - received animal and vegetable protein (AVP); and 3 - received animal and vegetable protein with animal protein subsequently removed (AVPR). Groups 2 and 3 received diets containing 13.7% bovine meat and bone meal (MBM) added to a vegetable diet (from days 21-117 in the AVP group and until day 47 in the AVPR group, when MBM was removed). RESULTS: On the 36th day, differences were detectable in the feeding profile (p <0.01) among the three experimental groups, which remained for a further 49 days (85th day). The AVPR group showed isotopic rate reversibility on the 110th day by presenting values similar to those in the control group (VP) (p> 0.05), indicating that it took 63 days to eliminate MBM in this group. Total atoms exchange (> 95%) of 13C and 15N was observed through incorporation of the diet into the AVP and AVPR groups. CONCLUSIONS: IRMS is an accurate and sensitive technique for tracing the feeding profile of ruminants through blood analysis, thus enabling investigation of ABP use.

17.
ACS Omega ; 4(26): 21761-21777, 2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31891054

ABSTRACT

To investigate the potential role of immunotherapies in the cellular and molecular mechanisms associated with ovarian cancer (OC), we applied a comparative proteomic toll using protein identification combined with mass spectrometry. Herein, the effects of the protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride, known as P-MAPA, and the human recombinant interleukin-12 (hrIL-12) were tested alone or in combination in human SKOV-3 cells. The doses and period were defined based on a previous study, which showed that 25 µg/mL P-MAPA and 1 ng/mL IL-12 are sufficient to reduce cell metabolism after 48 h. Indeed, among 2,881 proteins modulated by the treatments, 532 of them were strictly concordant and common. P-MAPA therapy upregulated proteins involved in tight junction, focal adhesion, ribosome constitution, GTP hydrolysis, semaphorin interactions, and expression of SLIT and ROBO, whereas it downregulated ERBB4 signaling, toll-like receptor signaling, regulation of NOTCH 4, and the ubiquitin proteasome pathway. In addition, IL-12 therapy led to upregulation of leukocyte migration, tight junction, and cell signaling, while cell communication, cell metabolism, and Wnt signaling were significantly downregulated in OC cells. A clear majority of proteins that were overexpressed by the combination of P-MAPA with IL-12 are involved in tight junction, focal adhesion, DNA methylation, metabolism of RNA, and ribosomal function; only a small number of downregulated proteins were involved in cell signaling, energy and mitochondrial processes, cell oxidation and senescence, and Wnt signaling. These findings suggest that P-MAPA and IL-12 efficiently regulated important proteins associated with OC progression; these altered proteins may represent potential targets for OC treatment in addition to its immunoadjuvant effects.

18.
J Proteomics ; 192: 280-290, 2019 02 10.
Article in English | MEDLINE | ID: mdl-30261322

ABSTRACT

Chronic venous ulcers affect the quality of life of patients around the world. The aims of this study were to identify the proteins expressed in chronic venous ulcer exudates, to categorize them according to their roles and to correlate them with the clinical and epidemiological aspects of the disease. The study population consisted of 37 ulcers from 28 patients, and the inflammatory exudates of these thirty-seven ulcers were subjected to tryptic digestion and mass spectrometry analysis. Twenty-three patients were female (62.2%), and five (37.8%) were male. The patients had a mean age of 70 (±10.1) years. Of the patients, 73% adhered to compression and rest, 81.1% reported a history of primary varices, 54.1% reported a history of systemic arterial hypertension, 54.1% reported a history of devitalized tissue in the wound bed and 64.9% reported ulcers with more than ten years of evolution. Seventy-six proteins were identified, and they were grouped according to their primary role in the healing process. Eight correlations between clinical and epidemiological data and protein expression were noteworthy: diabetes mellitus vs. Ig gamma-2 and apolipoprotein-A1 and albumin; congestive heart failure vs. Ig lambda-2; colonization vs. actin; compressive therapy vs. Ig kappa; systemic arterial hypertension vs. alpha-2-macroglobulin and apolipoprotein-A1; area of ulcer vs. apolipoprotein-A1; race vs. heavy chain Ig and Ig γ-1 chain; age and race vs. Ig γ-1 chain. These associations may help to elucidate the prognosis and chronicity of chronic venous ulcers based on secreted proteins.


Subject(s)
Blood Proteins/metabolism , Gene Expression Regulation , Proteome/metabolism , Varicose Ulcer/blood , Aged , Aged, 80 and over , Chronic Disease , Cross-Sectional Studies , Female , Humans , Male , Middle Aged
19.
PLoS One ; 13(10): e0206051, 2018.
Article in English | MEDLINE | ID: mdl-30359420

ABSTRACT

Paracoccidioidomycosis (PCM) is a systemic disease caused by thermodymorphic fungi of the Paracoccidioides brasiliensis complex, (Paracoccidioides spp.). Patients with PCM reveal specific cellular immune impairment. Despite the effective treatment, quiescent fungi can lead to relapse, usually late, the serological diagnosis of which has been deficient. The present study was carried out with the objective of investigating a biomarker for the identification of PCM relapse and another molecule behaving as an immunological recovery biomarker; therefore, it may be used as a cure criterion. In the evolutionary analysis of the proteins identified in PCM patients, comparing those that presented with those that did not reveal relapse, 29 proteins were identified. The interactions observed between the proteins, using transferrin and haptoglobin, as the main binding protein, were strong with all the others. Patient follow-up suggests that cerulosplamin may be a marker of relapse and that transferrin and apolipoprotein A-II may contribute to the evaluation of the treatment efficacy and avoiding a premature decision.


Subject(s)
Apolipoprotein A-II/blood , Ceruloplasmin/metabolism , Paracoccidioidomycosis/blood , Transferrin/metabolism , Adult , Aged , Aged, 80 and over , Female , Follow-Up Studies , Humans , Male , Middle Aged , Protein Interaction Maps , Recurrence , Treatment Outcome , Young Adult
20.
PLoS One ; 13(8): e0202804, 2018.
Article in English | MEDLINE | ID: mdl-30157221

ABSTRACT

The sensitivity of the double agar gel immunodiffusion test is about 90% in patients with untreated paracoccidioidomycosis (PCM), but it is much lower in cases of relapse. In addition, serum from patients with PCM caused by Paracoccidioides lutzii, frequent in the Midwest region of Brazil, do not react with the classical antigen obtained from Pb B-339. These findings showed the need for alternative diagnostic methods, such as biological markers through proteomics. The aim of this study was to identify biomarkers for the safe identification of PCM relapse and specific proteins that could distinguish infections caused by Paracoccidioides brasiliensis from those produced by Paracoccidioides lutzii. Proteomic analysis was performed in serum from 9 patients with PCM caused by P. brasiliensis, with and without relapse, from 4 patients with PCM produced by P. lutzii, and from 3 healthy controls. The comparative evaluation of the 29 identified plasma proteins suggested that the presence of the immunoglobulin (Ig) alpha-2 chain C region and the absence of Ig heavy chain V-III TIL indicate infection by P. lutzii. In addition, the absence of complement factor B protein might be a predictor of relapse. The evaluation of these proteins in a higher number of patients should be carried out in order to validate these findings.


Subject(s)
Biomarkers/blood , Paracoccidioides/metabolism , Paracoccidioidomycosis/diagnosis , Proteomics , Adolescent , Adult , Aged, 80 and over , Antibodies, Fungal/chemistry , Antibodies, Fungal/immunology , Case-Control Studies , Chromatography, High Pressure Liquid , Female , Fungal Proteins/analysis , Fungal Proteins/metabolism , Humans , Male , Middle Aged , Paracoccidioides/isolation & purification , Paracoccidioidomycosis/microbiology , Recurrence , Risk , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...