Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 309: 120947, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36096244

ABSTRACT

Eating behavior is regulated by central and peripheral signals, which interact to modulate the response to nutrient intake. Central control is mediated by the hypothalamus through neuropeptides that activate the orexigenic and anorexigenic pathways. Energy homeostasis depends on the efficiency of these regulatory mechanisms. This neuroendocrine regulation of hunger and appetite can be modulated by nutritional sensors such as adenosine monophosphate-activated protein kinase (AMPK). Thus, this systematic review discusses the literature on correlations between AMPK and hypothalamic neuropeptides regarding control of eating behavior. Lilacs, PubMed/Medline, ScienceDirect, and Web of Science were searched for articles published from 2009 to 2021 containing combinations of the following descriptors: "eating behavior," "hypothalamus," "neuropeptide," and "AMPK." Of the 1330 articles found initially, 27 were selected after application of the inclusion and exclusion criteria. Of the selected articles, 15 reported decreased AMPK activity, due to interventions using angiotensin II infusion, fructose, glucose, cholecystokinin, leptin, or lipopolysaccharide (LPS) injection; dietary control through a low-protein diet or a high-fat diet (60 % fat); induction of hyperthyroidism; or injection of AMPK inhibitors. Seven studies showed a decrease in neuropeptide Y (NPY) through CV4 AICAR administration; fructose, glucose, leptin, or angiotensin II injections; or infusion of LPS from Escherichia coli and liver kinase B1 (LKB1) overexpression. Eleven studies reported a decrease in food consumption due to a decrease in AMPK activity and/or hypothalamic neuropeptides such as NPY. The results indicate that there is a relationship between AMPK and the control of eating behavior: a decrease in AMPK activity due to a dietary or non-dietary stimulus is associated with a consequent decrease in food intake. Furthermore, AMPK activity can be modulated by glucose, thyroid hormones, estradiol, leptin, and ghrelin.


Subject(s)
Leptin , Neuropeptides , Leptin/metabolism , Ghrelin/metabolism , Neuropeptide Y/metabolism , AMP-Activated Protein Kinases/metabolism , Lipopolysaccharides/metabolism , Angiotensin II/metabolism , Hypothalamus/metabolism , Neuropeptides/metabolism , Feeding Behavior , Eating , Cholecystokinin/metabolism , Glucose/metabolism , Thyroid Hormones/metabolism , Estradiol/metabolism , Adenosine Monophosphate/metabolism , Fructose
2.
Nutr Neurosci ; 25(3): 502-510, 2022 Mar.
Article in English | MEDLINE | ID: mdl-32496945

ABSTRACT

Aim: To analyze the effects of exposure to a high-fat diet during the perinatal period and after weaning on white adipose tissue accumulation and gene expression of TNF- α and NF- κB.Method: Wistar female rats were fed with high-fat (H) or control (C) diet during pregnancy and lactation. The offspring were allocated into four groups: Control Control (CC), offspring of mothers GC, fed a control diet after weaning; Control High-fat (CH), offspring of mothers GC, fed a hight-fat diet after weaning; High-fat Control (HC), offspring of mothers GH, fed with control diet after weaning; and High-fat High-fat (HH), offspring of mothers GH, fed a H diet after weaning.Results: HH and HC groups showed increased body weight compared to CC group and increases in caloric intake, larger amount of white adipose tissue and adipocyte size compared to CC and CH groups. The HH and CH groups showed higher NF-kB expression in white adipose tissue compared to the CC and HC groups, and the HH group also showed higher TNF- α expression. In the hypothalamus, the HH and HC groups exhibited higher TNF- α expression compared to the CC and CH groups.Conclusion: Perinatal and post-weaning exposure to the high-fat diet increases the amount of white adipose tissue, adipocyte size, and expression of the inflammatory genes TNF-α and NF-kB.


Subject(s)
NF-kappa B , Tumor Necrosis Factor-alpha , Adipose Tissue/metabolism , Adipose Tissue, White/metabolism , Animals , Body Weight , Diet, High-Fat/adverse effects , Female , Hypothalamus/metabolism , Lactation , NF-kappa B/genetics , NF-kappa B/metabolism , Pregnancy , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...