Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(39): 51870-51882, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39134796

ABSTRACT

The study investigated the effects of cultivating Tridax procumbens in hydroponic conditions with different concentrations of copper ions, aiming to understand the physiological changes and the impact on the biosynthesis of secondary metabolites. The treatments consisted of a completely randomized design, with five increasing concentrations of copper (T0 = 0.235, T1 = 12.5, T2 = 25, T3 = 50, T4 = 100 µmol L-1 of Cu), under controlled conditions for 36 days. Analysis of bioactive compounds in leaves was performed by HPLC-DAD and ESI-MS. Several phenolic compounds, alkaloids, phytosterols and triterpenoids were identified, demonstrating the plant's metabolic plasticity. The highest dose of copper (100 µmol L-1) significantly promoted voacangine, the most predominant compound in the analyses. Notably, 66.7% of the metabolites that showed an increase in concentration, were phenolic compounds. Furthermore, treatments with 12.5 and 25 µmol L-1 of copper were identified as promoting the biosynthesis of phytosterols and triterpenoids. These biochemical adaptations can play a fundamental role in the survival and development of plants in environments contaminated by metals, and from this it is possible to determine cultivation techniques that maximize the biosynthesis of the compound of interest.


Subject(s)
Copper , Plant Leaves/metabolism , Asteraceae/metabolism , Phytosterols/metabolism
2.
Article in English | MEDLINE | ID: mdl-19117810

ABSTRACT

Synthetic polymeric materials such as polyethylene and polyurethane (PU) were compared to conventional adsorbents for solid phase extraction for cleaning up biological samples. Efficiency in eliminating proteins and other components usually present in biological samples, such as serum, urine, and tissues extracts, was evaluated. The assays consisted of measuring the remaining protein content in serum and tissue homogenates (liver) and collecting the spectra in the UV region for urine samples. Since the analysis of many endogenous and exogenous species in these matrices usually involves chromatographic separation, the efficiency of the clean-up procedures was also evaluated by injecting cleaned samples into a C-18 chromatographic column with UV detection. Among the investigated polymers, polytetrafluorethylene, high density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE) presented the best performance in retaining serum proteins. Proteic components of the liver homogenate were completely retained on polyurethane and polybutadiene (PB). Urine samples were cleaned by crossing columns of polytetrafluorethylene, ultra-high molecular weight polyethylene, high density polyethylene, polyurethane, and polyethylene co-butyl acrylate co-anhydride maleic (PEco), since the spectra collected after column percolation presented no peaks in the region between 190 and 390 nm. SPE cartridges showed different behavior, but along the lines of their usual performance; neither serum proteins nor urine components were retained on the phases and the liver components, though partially retained, were not desorbed with either water or methanol washes, with the exception of SAX. Chromatograms of samples cleaned with high density polyethylene showed that polymeric materials can be satisfactorily used as adsorbent for biological matrix components.


Subject(s)
Polyethylenes/chemistry , Polymers/chemistry , Polyurethanes/chemistry , Solid Phase Extraction/methods , Adsorption , Animals , Blood Proteins/metabolism , Humans , Liver/metabolism , Particle Size , Polyethylenes/metabolism , Polymers/metabolism , Polyurethanes/metabolism , Proteinuria/metabolism , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL