Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Electron Mater ; 4(7): 3486-3494, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35910938

ABSTRACT

Delayed fluorescence (DF) by triplet-triplet annihilation (TTA) is observed in solutions of a benzoperylene-imidoester mesogen that shows a hexagonal columnar mesophase at room temperature in the neat state. A similar benzoperylene-imide with a slightly smaller HOMO-LUMO gap, that also is hexagonal columnar liquid crystalline at room temperature, does not show DF in solution, and mixtures of the two mesogens show no DF in solution either, because of collisional quenching of the excited triplet states on the imidoester by the imide. In contrast, DF by TTA from the imide but not from the imidoester is observed in condensed films of such mixtures, even though neat films of either single material are not displaying DF. In contrast to the DF from the monomeric imidoester in solution, DF of the imide occurs from dimeric aggregates in the blend films, assisted by the imidoester. Thus, the close contact of intimately stacked molecules of the two different species in the columnar mesophase leads to a unique mesophase-assisted aggregate DF. This constitutes the first observation of DF by TTA from the columnar liquid crystalline state. If the imide is dispersed in films of polybromostyrene, which provides an external heavy-atom effect facilitating triplet formation, DF is also observed. Organic light-emitting diodes (OLEDs) devices incorporating these liquid crystal molecules demonstrated high external quantum efficiency (EQE). On the basis of the literature and to the best of our knowledge, the EQE reported is the highest among nondoped solution-processed OLED devices using a columnar liquid crystal molecule as the emitting layer.

2.
J Phys Chem A ; 125(36): 8074-8089, 2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34473511

ABSTRACT

The photophysical analysis of thermally activated delayed fluorescence (TADF) materials has become instrumental for providing insights into their stability and performance, which is not only relevant for organic light-emitting diodes but also for other applications such as sensing, imaging, and photocatalysis. Thus, a deeper understanding of the photophysics underpinning the TADF mechanism is required to push materials design further. Previously reported analyses in the literature of the kinetics of the various processes occurring in a TADF material rely on several a priori assumptions to estimate the rate constants for forward and reverse intersystem crossing. In this report, we demonstrate a method to determine these rate constants using a three-state model together with a steady-state approximation and, importantly, no additional assumptions. Further, we derive the exact rate equations, greatly facilitating a comparison of the TADF properties of structurally diverse emitters and providing a comprehensive understanding of the photophysics of these systems.

3.
ACS Appl Mater Interfaces ; 11(30): 27125-27133, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31314484

ABSTRACT

New thermally activated delayed fluorescence (TADF) blue emitter molecules based on the known donor-acceptor-donor (D-A-D)-type TADF molecule, 2,7-bis(9,9-dimethylacridin-10-yl)-9,9-dimethylthioxanthene-S,S-dioxide (DDMA-TXO2), are reported. The motivation for the present investigation is via the use of rational molecular design, based on DDMA-TXO2, to elevate the organic light emitting diode (OLED) performance and obtain deeper blue color coordinates. To achieve this goal, the strength of the donor (D) unit and acceptor (A) units have been tuned with methyl substituents. The methyl functionality on the acceptor was also expected to modulate the D-A torsion angle in order to obtain a blue shift in the electroluminescence. The effect of regioisomeric structures has also been investigated. Herein, we report the photophysical, electrochemical, and single-crystal X-ray crystallography data to assist with the successful OLED design. The methyl substituents on the DDMA-TXO2 framework have profound effects on the photophysics and color coordinates of the emitters. The weak electron-donating methyl groups alter the redox properties of the D and A units and consequently affect the singlet and triplet levels but not the energy gap (ΔEST). By systematically manipulating all of the aforementioned factors, devices have been obtained with acceptor-substituted III with a maximum external quantum efficiency of 22.6% and Commission Internationale de l'Éclairage coordinates of (0.15, 0.18) at 1000 cd m-2.

4.
Phys Chem Chem Phys ; 21(7): 3814-3821, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30698176

ABSTRACT

Phenazine derivative molecules were studied using steady state and time resolved fluorescence techniques and demonstrated to lead to strong formation of aggregated species, identified as dimers by time dependent density functional theory calculations. Blended films in a matrix of Zeonex®, produced at different concentrations, showed different contributions of dimer and monomer emissions in a prompt time frame, e.g. less than 50 ns. In contrast, the phosphorescence (e.g. emission from the triplet state) shows no significant effect on dimer formation, although strong dependence of the phosphorescence intensity on concentration is observed, leading to phosphorescence being quenched at higher concentration.

5.
Chem Mater ; 31(17): 6684-6695, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-32063676

ABSTRACT

We report the synthesis and structural and photophysical characterization of two series of molecules with functionalized azatriangulene electron donor cores and three pendant electron acceptor units. The presented donor and acceptor units are joined by C-C bonds, instead of the usual C-heteroatom bonds often found in thermally activated delayed fluorescence (TADF) emitters. The effects of the donor-acceptor strength and donor-acceptor dihedral angle on the emission properties are assessed. The data establish that the singlet-triplet energy gap is >0.3 eV and that delayed emission is present in only specific host matrices, irrespective of host polarity. Specific host behavior is atypical of many TADF materials, and we suggest the delayed emission in this work does not occur by a conventional vibronically coupled TADF mechanism, as the ΔE ST value is too large. Detailed photophysical analysis and supporting density functional theory calculations suggest that some presented azatriangulene molecules emit via an upper-triplet state crossing mechanism. This work highlights that several different mechanisms can be responsible for delayed emission, often with highly similar photophysics. Detailed photophysical analysis is required to establish which delayed emission mechanism is occurring. Our results also highlight a clear future direction toward vibronically coupled C-C bonded TADF materials.

6.
Adv Sci (Weinh) ; 5(6): 1700989, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29938177

ABSTRACT

By inverting the common structural motif of thermally activated delayed fluorescence materials to a rigid donor core and multiple peripheral acceptors, reverse intersystem crossing (rISC) rates are demonstrated in an organic material that enables utilization of triplet excited states at faster rates than Ir-based phosphorescent materials. A combination of the inverted structure and multiple donor-acceptor interactions yields up to 30 vibronically coupled singlet and triplet states within 0.2 eV that are involved in rISC. This gives a significant enhancement to the rISC rate, leading to delayed fluorescence decay times as low as 103.9 ns. This new material also has an emission quantum yield ≈1 and a very small singlet-triplet gap. This work shows that it is possible to achieve both high photoluminescence quantum yield and fast rISC in the same molecule. Green organic light-emitting diode devices with external quantum efficiency >30% are demonstrated at 76 cd m-2.

7.
Sci Rep ; 7(1): 6234, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28740185

ABSTRACT

We report on the engineering of full thermally activated delayed fluorescence - based white organic light emitting diodes (W-OLEDs) composed of three emitters (2,7-bis(9,9-dimethyl-acridin-10-yl)-9,9-dimethylthioxanthene-S,S-dioxide (DDMA-TXO2), 2,7-bis(phenoxazin-10-yl)-9,9-dimethylthioxanthene-S,S-dioxide (DPO-TXO2) and 3,11-di(10H-phenoxazin-10-yl)dibenzo[a,j]phenazine (POZ-DBPHZ) in two different hosts. By controlling the device design through the study of the emission of DDMA-TXO2 and DPO-TXO2, the behaviour of POZ-DBPHZ in a device with more than one emitter, and the combination of the three materials, respectively, we show that external quantum efficiencies as high as 16% can be obtained for a structure with a correlated colour temperature close to warm white, together with colour rendering index close to 80. However it is in their performance stability that provides the true breakthrough: at 1000 cd/m2 the efficiencies were still above 10%, which is one of the best for this type of devices.

8.
J Phys Chem Lett ; 7(17): 3341-6, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27505620

ABSTRACT

We show that the emitter and host combination must be optimized to minimize the reverse intersystem crossing (rISC) barrier and maximize thermally activated delayed fluorescence (TADF). The blue TADF emitter, 2,7-bis(9,9-dimethyl-acridin-10-yl)-9,9-dimethylthioxanthene-S,S-dioxide (DDMA-TXO2), has strong TADF character due to efficient charge transfer (CT) state formation. By combining DDMA-TXO2 with a host of correct polarity (DPEPO) that relaxes the CT manifolds' energy to become resonant with the lowest-energy local triplet state of DDMA-TXO2, the emitter and host combination produce a minimum rISC barrier (ΔEST), which maximizes TADF efficiency. We show that the sensitivity of these splittings is highly dependent on emitter environment and must be carefully tuned to optimize device performance. Devices utilizing DDMA-TXO2 in the DPEPO host show blue electroluminescence (EL), with commission internationale de l'éclairage (CIE) chromaticity coordinates of CIE (0.16, 0.24), with a maximum external quantum efficiency of 22.4%. This high device performance is a direct consequence of optimizing the TADF efficiency by this "host tuning".

SELECTION OF CITATIONS
SEARCH DETAIL
...