Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 11(9): 3305-3312, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32255640

ABSTRACT

We describe the photophysical processes that give rise to thermally activated delayed fluorescence in the excited state intramolecular proton transfer (ESIPT) molecule, triquinolonobenzene (TQB). Using transient absorption and time-resolved photoluminescence spectroscopy, we fully characterize prompt and delayed emission, phosphorescence, and oxygen quenching to reveal the reverse intersystem crossing mechanism (rISC). After photoexcitation and rapid ESIPT to the TQB-TB tautomer, emission from S1 is found to compete with thermally activated ISC to an upper triplet state, T2, very close in energy to S1 and limiting photoluminescence quantum yield. T2 slowly decays to the lowest triplet state, T1, via internal conversion. In the presence of oxygen, T2 is quenched to the ground state of the double proton transferred TQB-TC tautomer. Our measurements demonstrate that rISC in TQB occurs from T2 to S1 driven by thermally activated reverse internal conversion from T1 to T2 and support recent calculations by Cao et al. (Cao, Y.; Eng, J.; Penfold, T. J. Excited State Intramolecular Proton Transfer Dynamics for Triplet Harvesting in Organic Molecules. J. Phys. Chem. A 2019, 123, 2640-2649).

2.
ACS Appl Mater Interfaces ; 11(48): 45171-45179, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31697057

ABSTRACT

We present a study of two isomeric thermally activated delayed fluorescence (TADF) emitters 9,9'-(sulfonylbis(pyrimidine-5,2-diyl))bis(3,6-di-tert-butyl-9H-carbazole) (pDTCz-DPmS) and 9,9'-(sulfonylbis(pyrazine-5,2-diyl))bis(3,6-di-tert-butyl-9H-carbazole) (pDTCz-DPzS). The use of pyrimidine and pyrazine as bridging units between the electron donor and acceptor moieties is found to be advantageous compared to the phenyl- (pDTCz-DPS) and pyridine-based analogues (pDTCz-3DPyS and pDTCz-2DPyS). Conformational modulation of the donor groups as a function of the bridge results in high photoluminescence quantum yields (ΦPL > 68%) and small energy gaps between singlet and triplet excited states (ΔEST < 160 meV). OLEDs using pDTCz-DPmS and pDTCz-DPzS as emitters exhibit blue and green electroluminescence, respectively, with higher maximum external quantum efficiencies (EQEmax of 14% and 18%, respectively) and a reduced efficiency roll-off as compared to the reference devices using pDTCz-DPS, pDTCz-3DPyS, and pDTCz-2DPyS as the emitters. Our results provide a more complete understanding on the impact of the bridge structure in D-A-D TADF systems on the optoelectronic properties of the emitter and how the balance between color purity and EQE in the devices can be controlled, advancing the design strategies for TADF emitters.

3.
Nat Commun ; 8: 14987, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28406153

ABSTRACT

Regio- and conformational isomerization are fundamental in chemistry, with profound effects upon physical properties, however their role in excited state properties is less developed. Here two regioisomers of bis(10H-phenothiazin-10-yl)dibenzo[b,d]thiophene-S,S-dioxide, a donor-acceptor-donor (D-A-D) thermally-activated delayed fluorescence (TADF) emitter, are studied. 2,8-bis(10H-phenothiazin-10-yl)dibenzo[b,d]thiophene-S,S-dioxide exhibits only one quasi-equatorial conformer on both donor sites, with charge-transfer (CT) emission close to the local triplet state leading to efficient TADF via spin-vibronic coupling. However, 3,7-bis(10H-phenothiazin-10-yl)dibenzo[b,d]thiophene-S,S-dioxide displays both a quasi-equatorial CT state and a higher-energy quasi-axial CT state. No TADF is observed in the quasi-axial CT emission. These two CT states link directly to the two folded conformers of phenothiazine. The presence of the low-lying local triplet state of the axial conformer also means that this quasi-axial CT is an effective loss pathway both photophysically and in devices. Importantly, donors or acceptors with more than one conformer have negative repercussions for TADF in organic light-emitting diodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...